Results

TestROC

Procedure Notes

The TestROC optimal cutpoint analysis has been completed using the following specifications:

 

Measure Variable(s): THRIL

Class Variable: outcome

Positive Class: Yes

 

Method: maximize_metric

All Observed Cutpoints: TRUE

Metric: sum_sens_spec

Direction (relative to cutpoint): >=

Tie Breakers: c

Metric Tolerance: 0.05

 

For more information on how calculations are performed and interpretting results, please see the documentation

Results Table

Scale: THRIL
CutpointSensitivity (%)Specificity (%)PPV (%)NPV (%)Youden's indexAUCMetric Score
3.55100%0%50%NaN%0.00000.88061.0000
3.8100%3.33%50.85%100%0.03330.88061.0333
4.45100%6.67%51.72%100%0.06670.88061.0667
4.596.67%10%51.79%75%0.06670.88061.0667
4.5869442668524296.67%16.67%53.7%83.33%0.13330.88061.1333
4.896.67%20%54.72%85.71%0.16670.88061.1667
4.993.33%20%53.85%75%0.13330.88061.1333
5.393.33%23.33%54.9%77.78%0.16670.88061.1667
5.3065964166001593.33%26.67%56%80%0.20000.88061.2000
5.593.33%30%57.14%81.82%0.23330.88061.2333
5.5893.33%50%65.12%88.24%0.43330.88061.4333
5.6600639077840393.33%53.33%66.67%88.89%0.46670.88061.4667
5.7483620903905593.33%56.67%68.29%89.47%0.50000.88061.5000
5.993.33%60%70%90%0.53330.88061.5333
693.33%66.67%73.68%90.91%0.60000.88061.6000
6.2159031307112293.33%70%75.68%91.3%0.63330.88061.6333
6.690%70%75%87.5%0.60000.88061.6000
6.6590%73.33%77.14%88%0.63330.88061.6333
6.890%76.67%79.41%88.46%0.66670.88061.6667
6.8094620563581286.67%86.67%86.67%86.67%0.73330.88061.7333
6.983.33%86.67%86.21%83.87%0.70000.88061.7000
776.67%86.67%85.19%78.79%0.63330.88061.6333
7.0406731641116276.67%90%88.46%79.41%0.66670.88061.6667
7.273.33%90%88%77.14%0.63330.88061.6333
7.2570%90%87.5%75%0.60000.88061.6000
7.3263.33%90%86.36%71.05%0.53330.88061.5333
7.556.67%90%85%67.5%0.46670.88061.4667
7.5453.33%93.33%88.89%66.67%0.46670.88061.4667
7.5805419668017453.33%96.67%94.12%67.44%0.50000.88061.5000
7.6146909822350%96.67%93.75%65.91%0.46670.88061.4667
7.7067124171594346.67%96.67%93.33%64.44%0.43330.88061.4333
7.943.33%96.67%92.86%63.04%0.40000.88061.4000
7.9679299288078640%96.67%92.31%61.7%0.36670.88061.3667
8.1829198686229736.67%96.67%91.67%60.42%0.33330.88061.3333
8.4015755771744733.33%96.67%90.91%59.18%0.30000.88061.3000
8.4184266727690526.67%96.67%88.89%56.86%0.23330.88061.2333
8.523.33%96.67%87.5%55.77%0.20000.88061.2000
8.8523.33%100%100%56.6%0.23330.88061.2333
8.920%100%100%55.56%0.20000.88061.2000
9.2516.67%100%100%54.55%0.16670.88061.1667
9.53.33%100%100%50.85%0.03330.88061.0333

 

ROC Curves

ROC Curve: THRIL

Binomial Logistic Regression

Model Fit Measures
ModelDevianceAICMcFT
153.359357.35930.35850.4401

 

Model Coefficients - outcome
PredictorEstimateSEZp
Intercept8.95582.28923.9122< .0001
THRIL-1.33090.3353-3.9696< .0001
Note. Estimates represent the log odds of "outcome = No" vs. "outcome = Yes"

 

Prediction

Classification Table – …
Predicted
ObservedYesNo% Correct
Yes27390.0000
No72376.6667
Note. The cut-off value is set to 0.5

 

Predictive Measures
AccuracySpecificitySensitivityAUC
0.83330.90000.76670.8806
Note. The cut-off value is set to 0.5

 

ROC Curve

Independent Samples T-Test

Independent Samples T-Test
  Statisticp
THRILMann-Whitney U107.5000< .0001
Note. Hₐ μ No ≠ μ Yes

 

R

    AUC           p-value 
_____________________________ 
   0.8806 	 4.177e-07