Results

Latent Profile Analysis

_____________________________________________________________________________________________

1. tidyLPA R package is described in the page.

2. Four models(1,2,3,6) are specified using mclust R package.

3. Person membership will be shown in the datasheet.

4. Feature requests and bug reports can be made on the GitHub.

_____________________________________________________________________________________________

Model fit
 Values
Model1.00000
Classes2.00000
LogLik-972.86681
AIC1965.73362
AWE2068.40351
BIC1993.00750
CAIC2003.00750
CLC1947.61149
KIC1978.73362
SABIC1961.40241
ICL-1996.03503
Entropy0.93893
prob_min0.98298
prob_max0.99219
n_min0.47788
n_max0.52212
BLRT_val53.99260
BLRT_p0.00990
[3]

 

Class comparison
ClassModelLogLikAICAWEBICCAICCLCKICSABICICLEntropy
11-10002012207220282034200220212009-20281.000
21-9731966206819932003194819791961-19960.939
[3]

 

Estimates
 CategoryParameterEstimateSEpClassModelClasses
1MeansE_15.080.553< .001112
2MeansE_21.350.192< .001112
3MeansE_35.790.773< .001112
4VariancesE_115.281.784< .001112
5VariancesE_23.860.528< .001112
6VariancesE_327.862.709< .001112
7MeansE_14.240.518< .001212
8MeansE_29.680.343< .001212
9MeansE_33.090.763< .001212
10VariancesE_115.281.784< .001212
11VariancesE_23.860.528< .001212
12VariancesE_327.862.709< .001212
[3]

 

Correlation plot for a mixture model

Latent profile plot

[3]

Density plot

[3]

Elbow plot

[4]

[4]

Latent Profile Analysis

_____________________________________________________________________________________________

1. tidyLPA R package is described in the page.

2. Four models(1,2,3,6) are specified using mclust R package.

3. Person membership will be shown in the datasheet.

4. Feature requests and bug reports can be made on the GitHub.

_____________________________________________________________________________________________

Model fit
 Values
Model1.00000
Classes2.00000
LogLik-972.86681
AIC1965.73362
AWE2068.40351
BIC1993.00750
CAIC2003.00750
CLC1947.61149
KIC1978.73362
SABIC1961.40241
ICL-1996.03503
Entropy0.93893
prob_min0.98298
prob_max0.99219
n_min0.47788
n_max0.52212
BLRT_val53.99260
BLRT_p0.00990
[3]

 

Class comparison
ClassModelLogLikAICAWEBICCAICCLCKICSABICICLEntropy
11-10002012207220282034200220212009-20281.000
21-9731966206819932003194819791961-19960.939
[3]

 

Estimates
 CategoryParameterEstimateSEpClassModelClasses
1MeansE_15.080.505< .001112
2MeansE_21.350.147< .001112
3MeansE_35.790.754< .001112
4VariancesE_115.281.713< .001112
5VariancesE_23.860.408< .001112
6VariancesE_327.863.071< .001112
7MeansE_14.240.554< .001212
8MeansE_29.680.330< .001212
9MeansE_33.090.743< .001212
10VariancesE_115.281.713< .001212
11VariancesE_23.860.408< .001212
12VariancesE_327.863.071< .001212
[3]

 

Correlation plot for a mixture model

Latent profile plot

[3]

Density plot

[3]

Elbow plot

[4]

[4]

Latent Class Analysis

Logistic regression coefficients


            
            
        
            
                

LCA Plot

[5]

Item by class

[4]

Profile Plot

[4]

Elbow Plot

[4]

_____________________________________________________________________________________________

1. Latent Class Analysis based on poLCA(Linzer & Lewis, 2022) R package.

2. Variables must contain integer values, and must be coded with consecutive values from 1 to the maximum number.

3. Membership table will be shown in the datasheet.

4. Feature requests and bug reports can be made on my GitHub.

_____________________________________________________________________________________________


            
            
        
            
                

Model Fit

Model fit
ClassLog-likelihoodResid.dfAICAIC3BICSABICCAICEntropyG² pχ²χ² p
2-42710028969179538879740.6451031.0002221.000
Note. G²=Likelihood ratio statistic; χ²=Pearson Chi-square goodness of fit statistic; Entropy=entropy R^2 statistic (Vermunt & Magidson, 2013, p. 71)
[5]

 

Model comparison
ClassAICAIC3BICSABICCAICLog-likelihoodχ²
1911921939907949-446232141
2896917953887974-427222103
[5]

 

Item response probabilities

Probability of T_selfconcept - Transform 1
 Pr(1)Pr(2)
class 1: 0.7410.259
class 2: 0.7490.251

 

Probability of T_task - Transform 1
 Pr(1)Pr(2)
class 1: 0.9410.0590
class 2: 0.8800.1198

 

Probability of T_trauma - Transform 1
 Pr(1)Pr(2)
class 1: 1.0004.17e-12
class 2: 0.5050.495

 

Probability of T_threat - Transform 1
 Pr(1)Pr(2)
class 1: 1.0001.35e-66
class 2: 0.8180.182

 

Probability of T_conflict - Transform 1
 Pr(1)Pr(2)
class 1: 0.9060.0938
class 2: 1.0002.34e-39

 

Probability of T_transgression - Transform 1
 Pr(1)Pr(2)
class 1: 0.8790.121
class 2: 1.0002.24e-41

 

Probability of ERP_anxiety (2) - Transform 1
 Pr(1)Pr(2)
class 1: 0.8610.139
class 2: 0.3580.642

 

Probability of ERP_closeness - Transform 1
 Pr(1)Pr(2)
class 1: 0.9750.0252
class 2: 0.9450.0552

 

Probability of ERP_socialanx - Transform 1
 Pr(1)Pr(2)
class 1: 0.7590.241
class 2: 1.0001.39e-11

 

Probability of ERP_ hopeless - Transform 1
 Pr(1)Pr(2)
class 1: 0.4700.530
class 2: 0.6500.350

 

[5]

Probability

Size of each latent class
 Probability
10.661
20.339
[5]

 

Predicted cell counts from latent class analysis
 T_selfconcept...Transform.1T_task...Transform.1T_trauma...Transform.1T_threat...Transform.1T_conflict...Transform.1T_transgression...Transform.1ERP_anxiety..2....Transform.1ERP_closeness...Transform.1ERP_socialanx...Transform.1ERP_.hopeless...Transform.1observedexpected
11.001.001.001.001.001.001.001.001.001.0015.0014.6940
21.001.001.001.001.001.001.001.001.002.0012.0015.2390
31.001.001.001.001.001.001.001.002.001.004.003.9410
41.001.001.001.001.001.001.001.002.002.006.004.4510
51.001.001.001.001.001.001.002.001.001.001.000.4550
61.001.001.001.001.001.002.001.001.001.005.006.1150
71.001.001.001.001.001.002.001.001.002.003.004.4710
81.001.001.001.001.001.002.001.002.002.001.000.7180
91.001.001.001.001.001.002.002.001.001.001.000.2920
101.001.001.001.001.001.002.002.002.001.001.000.0160
111.001.001.001.001.002.001.001.001.001.001.001.7000
121.001.001.001.001.002.001.001.001.002.004.001.9200
131.001.001.001.001.002.002.001.001.002.001.000.3100
141.001.001.001.002.001.001.001.001.002.004.001.4490
151.001.001.001.002.001.001.001.002.002.001.000.4610
161.001.001.001.002.001.002.001.001.002.001.000.2340
171.001.001.001.002.002.001.001.001.002.001.000.1990
181.001.001.002.001.001.002.001.001.001.002.000.9190
191.001.001.002.001.001.002.001.001.002.001.000.4940
201.001.002.001.001.001.001.001.001.001.002.002.2500
211.001.002.001.001.001.001.002.001.001.001.000.1310
221.001.002.001.001.001.002.001.001.001.004.004.0400
231.001.002.001.001.001.002.001.001.002.003.002.1720
241.001.002.002.001.001.002.001.001.001.001.000.9020
251.001.002.002.001.001.002.001.001.002.001.000.4850
261.002.001.001.001.001.001.001.001.001.001.001.0900
271.002.001.001.001.001.001.001.001.002.001.001.0460
281.002.001.001.001.001.002.001.001.001.002.000.6860
291.002.001.001.001.001.002.001.001.002.002.000.4430
301.002.001.002.001.001.002.001.001.002.001.000.0670
312.001.001.001.001.001.001.001.001.001.008.005.1130
322.001.001.001.001.001.001.001.001.002.004.005.3190
332.001.001.001.001.001.001.001.002.001.004.001.3800
342.001.001.001.001.001.002.001.001.002.002.001.5330
352.001.001.001.001.002.001.001.001.001.002.000.5960
362.001.002.001.001.001.001.001.001.001.003.000.7550
372.001.002.001.001.001.001.001.001.002.001.000.4060
382.001.002.001.001.001.002.001.001.001.002.001.3560
392.001.002.002.001.001.001.001.001.002.001.000.0910
402.002.001.001.001.001.001.001.001.002.001.000.3640
412.002.001.001.001.001.002.001.002.002.001.000.0160
[5]

 

[4]

Latent Class Analysis

Logistic regression coefficients


            
            
        
            
                

_____________________________________________________________________________________________

1. Latent Class Analysis based on poLCA(Linzer & Lewis, 2022) R package.

2. Variables must contain integer values, and must be coded with consecutive values from 1 to the maximum number.

3. Membership table will be shown in the datasheet.

4. Feature requests and bug reports can be made on my GitHub.

_____________________________________________________________________________________________


            
            
        
            
                

Model Fit

Model fit
ClassLog-likelihoodResid.dfAICAIC3BICSABICCAICEntropyG² pχ²χ² p
.............
[5]

 

[4]

References

[1] The jamovi project (2023). jamovi. (Version 2.4) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2022). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from CRAN snapshot 2023-04-07).

[3] Rosenberg, J., Beymer, P., Anderson, D., Van Lissa, C., & Schmidt, J. (2021). tidyLPA: Easily Carry Out Latent Profile Analysis (LPA) Using Open-Source or Commercial Software. [R package]. Retrieved from https://CRAN.R-project.org/package=tidyLPA.

[4] Seol, H. (2023). snowRMM: Rasch Mixture, LCA, and Test Equating Analysis. (Version 5.6.8) [jamovi module]. URL https://github.com/hyunsooseol/snowRMM.

[5] Linzer, D., & Lewis, J. (2022). poLCA: An R Package for Polytomous Variable Latent Class Analysis. [R package]. Retrieved from https://CRAN.R-project.org/package=poLCA.