_____________________________________________________________________________________________
1. tidyLPA R package is described in the page.
2. Four models(1,2,3,6) are specified using mclust R package.
3. Person membership will be shown in the datasheet.
4. Feature requests and bug reports can be made on the GitHub.
_____________________________________________________________________________________________
Model fit | |||
---|---|---|---|
Values | |||
Model | 1.00000 | ||
Classes | 2.00000 | ||
LogLik | -972.86681 | ||
AIC | 1965.73362 | ||
AWE | 2068.40351 | ||
BIC | 1993.00750 | ||
CAIC | 2003.00750 | ||
CLC | 1947.61149 | ||
KIC | 1978.73362 | ||
SABIC | 1961.40241 | ||
ICL | -1996.03503 | ||
Entropy | 0.93893 | ||
prob_min | 0.98298 | ||
prob_max | 0.99219 | ||
n_min | 0.47788 | ||
n_max | 0.52212 | ||
BLRT_val | 53.99260 | ||
BLRT_p | 0.00990 | ||
[3] |
Class comparison | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Model | LogLik | AIC | AWE | BIC | CAIC | CLC | KIC | SABIC | ICL | Entropy | ||||||||||||
1 | 1 | -1000 | 2012 | 2072 | 2028 | 2034 | 2002 | 2021 | 2009 | -2028 | 1.000 | ||||||||||||
2 | 1 | -973 | 1966 | 2068 | 1993 | 2003 | 1948 | 1979 | 1961 | -1996 | 0.939 | ||||||||||||
[3] |
Estimates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | Parameter | Estimate | SE | p | Class | Model | Classes | ||||||||||
1 | Means | E_1 | 5.08 | 0.553 | < .001 | 1 | 1 | 2 | |||||||||
2 | Means | E_2 | 1.35 | 0.192 | < .001 | 1 | 1 | 2 | |||||||||
3 | Means | E_3 | 5.79 | 0.773 | < .001 | 1 | 1 | 2 | |||||||||
4 | Variances | E_1 | 15.28 | 1.784 | < .001 | 1 | 1 | 2 | |||||||||
5 | Variances | E_2 | 3.86 | 0.528 | < .001 | 1 | 1 | 2 | |||||||||
6 | Variances | E_3 | 27.86 | 2.709 | < .001 | 1 | 1 | 2 | |||||||||
7 | Means | E_1 | 4.24 | 0.518 | < .001 | 2 | 1 | 2 | |||||||||
8 | Means | E_2 | 9.68 | 0.343 | < .001 | 2 | 1 | 2 | |||||||||
9 | Means | E_3 | 3.09 | 0.763 | < .001 | 2 | 1 | 2 | |||||||||
10 | Variances | E_1 | 15.28 | 1.784 | < .001 | 2 | 1 | 2 | |||||||||
11 | Variances | E_2 | 3.86 | 0.528 | < .001 | 2 | 1 | 2 | |||||||||
12 | Variances | E_3 | 27.86 | 2.709 | < .001 | 2 | 1 | 2 | |||||||||
[3] |
_____________________________________________________________________________________________
1. tidyLPA R package is described in the page.
2. Four models(1,2,3,6) are specified using mclust R package.
3. Person membership will be shown in the datasheet.
4. Feature requests and bug reports can be made on the GitHub.
_____________________________________________________________________________________________
Model fit | |||
---|---|---|---|
Values | |||
Model | 1.00000 | ||
Classes | 2.00000 | ||
LogLik | -972.86681 | ||
AIC | 1965.73362 | ||
AWE | 2068.40351 | ||
BIC | 1993.00750 | ||
CAIC | 2003.00750 | ||
CLC | 1947.61149 | ||
KIC | 1978.73362 | ||
SABIC | 1961.40241 | ||
ICL | -1996.03503 | ||
Entropy | 0.93893 | ||
prob_min | 0.98298 | ||
prob_max | 0.99219 | ||
n_min | 0.47788 | ||
n_max | 0.52212 | ||
BLRT_val | 53.99260 | ||
BLRT_p | 0.00990 | ||
[3] |
Class comparison | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Model | LogLik | AIC | AWE | BIC | CAIC | CLC | KIC | SABIC | ICL | Entropy | ||||||||||||
1 | 1 | -1000 | 2012 | 2072 | 2028 | 2034 | 2002 | 2021 | 2009 | -2028 | 1.000 | ||||||||||||
2 | 1 | -973 | 1966 | 2068 | 1993 | 2003 | 1948 | 1979 | 1961 | -1996 | 0.939 | ||||||||||||
[3] |
Estimates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | Parameter | Estimate | SE | p | Class | Model | Classes | ||||||||||
1 | Means | E_1 | 5.08 | 0.505 | < .001 | 1 | 1 | 2 | |||||||||
2 | Means | E_2 | 1.35 | 0.147 | < .001 | 1 | 1 | 2 | |||||||||
3 | Means | E_3 | 5.79 | 0.754 | < .001 | 1 | 1 | 2 | |||||||||
4 | Variances | E_1 | 15.28 | 1.713 | < .001 | 1 | 1 | 2 | |||||||||
5 | Variances | E_2 | 3.86 | 0.408 | < .001 | 1 | 1 | 2 | |||||||||
6 | Variances | E_3 | 27.86 | 3.071 | < .001 | 1 | 1 | 2 | |||||||||
7 | Means | E_1 | 4.24 | 0.554 | < .001 | 2 | 1 | 2 | |||||||||
8 | Means | E_2 | 9.68 | 0.330 | < .001 | 2 | 1 | 2 | |||||||||
9 | Means | E_3 | 3.09 | 0.743 | < .001 | 2 | 1 | 2 | |||||||||
10 | Variances | E_1 | 15.28 | 1.713 | < .001 | 2 | 1 | 2 | |||||||||
11 | Variances | E_2 | 3.86 | 0.408 | < .001 | 2 | 1 | 2 | |||||||||
12 | Variances | E_3 | 27.86 | 3.071 | < .001 | 2 | 1 | 2 | |||||||||
[3] |
_____________________________________________________________________________________________
1. Latent Class Analysis based on poLCA(Linzer & Lewis, 2022) R package.
2. Variables must contain integer values, and must be coded with consecutive values from 1 to the maximum number.
3. Membership table will be shown in the datasheet.
4. Feature requests and bug reports can be made on my GitHub.
_____________________________________________________________________________________________
Model fit | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Log-likelihood | Resid.df | AIC | AIC3 | BIC | SABIC | CAIC | Entropy | G² | G² p | χ² | χ² p | |||||||||||||
2 | -427 | 1002 | 896 | 917 | 953 | 887 | 974 | 0.645 | 103 | 1.000 | 222 | 1.000 | |||||||||||||
Note. G²=Likelihood ratio statistic; χ²=Pearson Chi-square goodness of fit statistic; Entropy=entropy R^2 statistic (Vermunt & Magidson, 2013, p. 71) | |||||||||||||||||||||||||
[5] |
Model comparison | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | AIC | AIC3 | BIC | SABIC | CAIC | Log-likelihood | χ² | G² | |||||||||
1 | 911 | 921 | 939 | 907 | 949 | -446 | 232 | 141 | |||||||||
2 | 896 | 917 | 953 | 887 | 974 | -427 | 222 | 103 | |||||||||
[5] |
Probability of T_selfconcept - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 0.741 | 0.259 | |||
class 2: | 0.749 | 0.251 | |||
Probability of T_task - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 0.941 | 0.0590 | |||
class 2: | 0.880 | 0.1198 | |||
Probability of T_trauma - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 1.000 | 4.17e-12 | |||
class 2: | 0.505 | 0.495 | |||
Probability of T_threat - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 1.000 | 1.35e-66 | |||
class 2: | 0.818 | 0.182 | |||
Probability of T_conflict - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 0.906 | 0.0938 | |||
class 2: | 1.000 | 2.34e-39 | |||
Probability of T_transgression - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 0.879 | 0.121 | |||
class 2: | 1.000 | 2.24e-41 | |||
Probability of ERP_anxiety (2) - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 0.861 | 0.139 | |||
class 2: | 0.358 | 0.642 | |||
Probability of ERP_closeness - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 0.975 | 0.0252 | |||
class 2: | 0.945 | 0.0552 | |||
Probability of ERP_socialanx - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 0.759 | 0.241 | |||
class 2: | 1.000 | 1.39e-11 | |||
Probability of ERP_ hopeless - Transform 1 | |||||
---|---|---|---|---|---|
Pr(1) | Pr(2) | ||||
class 1: | 0.470 | 0.530 | |||
class 2: | 0.650 | 0.350 | |||
[5]
Size of each latent class | |||
---|---|---|---|
Probability | |||
1 | 0.661 | ||
2 | 0.339 | ||
[5] |
Predicted cell counts from latent class analysis | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T_selfconcept...Transform.1 | T_task...Transform.1 | T_trauma...Transform.1 | T_threat...Transform.1 | T_conflict...Transform.1 | T_transgression...Transform.1 | ERP_anxiety..2....Transform.1 | ERP_closeness...Transform.1 | ERP_socialanx...Transform.1 | ERP_.hopeless...Transform.1 | observed | expected | ||||||||||||||
1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 15.00 | 14.6940 | |||||||||||||
2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 12.00 | 15.2390 | |||||||||||||
3 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 4.00 | 3.9410 | |||||||||||||
4 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 6.00 | 4.4510 | |||||||||||||
5 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 0.4550 | |||||||||||||
6 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 5.00 | 6.1150 | |||||||||||||
7 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 3.00 | 4.4710 | |||||||||||||
8 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 2.00 | 2.00 | 1.00 | 0.7180 | |||||||||||||
9 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | 0.2920 | |||||||||||||
10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 1.00 | 1.00 | 0.0160 | |||||||||||||
11 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.7000 | |||||||||||||
12 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 4.00 | 1.9200 | |||||||||||||
13 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.3100 | |||||||||||||
14 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 4.00 | 1.4490 | |||||||||||||
15 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 0.4610 | |||||||||||||
16 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.2340 | |||||||||||||
17 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.1990 | |||||||||||||
18 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 0.9190 | |||||||||||||
19 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.4940 | |||||||||||||
20 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.2500 | |||||||||||||
21 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 0.1310 | |||||||||||||
22 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 4.00 | 4.0400 | |||||||||||||
23 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 3.00 | 2.1720 | |||||||||||||
24 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.9020 | |||||||||||||
25 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.4850 | |||||||||||||
26 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0900 | |||||||||||||
27 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.0460 | |||||||||||||
28 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 0.6860 | |||||||||||||
29 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 2.00 | 0.4430 | |||||||||||||
30 | 1.00 | 2.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.0670 | |||||||||||||
31 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 8.00 | 5.1130 | |||||||||||||
32 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 4.00 | 5.3190 | |||||||||||||
33 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 4.00 | 1.3800 | |||||||||||||
34 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 2.00 | 1.5330 | |||||||||||||
35 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 0.5960 | |||||||||||||
36 | 2.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 3.00 | 0.7550 | |||||||||||||
37 | 2.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.4060 | |||||||||||||
38 | 2.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.3560 | |||||||||||||
39 | 2.00 | 1.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.0910 | |||||||||||||
40 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.3640 | |||||||||||||
41 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 2.00 | 2.00 | 1.00 | 0.0160 | |||||||||||||
[5] |
[4]
_____________________________________________________________________________________________
1. Latent Class Analysis based on poLCA(Linzer & Lewis, 2022) R package.
2. Variables must contain integer values, and must be coded with consecutive values from 1 to the maximum number.
3. Membership table will be shown in the datasheet.
4. Feature requests and bug reports can be made on my GitHub.
_____________________________________________________________________________________________
Model fit | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Log-likelihood | Resid.df | AIC | AIC3 | BIC | SABIC | CAIC | Entropy | G² | G² p | χ² | χ² p | |||||||||||||
. | . | . | . | . | . | . | . | . | . | . | . | . | |||||||||||||
[5] |
[4]
[1] The jamovi project (2023). jamovi. (Version 2.4) [Computer Software]. Retrieved from https://www.jamovi.org.
[2] R Core Team (2022). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from CRAN snapshot 2023-04-07).
[3] Rosenberg, J., Beymer, P., Anderson, D., Van Lissa, C., & Schmidt, J. (2021). tidyLPA: Easily Carry Out Latent Profile Analysis (LPA) Using Open-Source or Commercial Software. [R package]. Retrieved from https://CRAN.R-project.org/package=tidyLPA.
[4] Seol, H. (2023). snowRMM: Rasch Mixture, LCA, and Test Equating Analysis. (Version 5.6.8) [jamovi module]. URL https://github.com/hyunsooseol/snowRMM.
[5] Linzer, D., & Lewis, J. (2022). poLCA: An R Package for Polytomous Variable Latent Class Analysis. [R package]. Retrieved from https://CRAN.R-project.org/package=poLCA.