ANOVA - Reactionspeed | ||||||
---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | η²p | |
contrast1 | 756860.167 | 1 | 756860.167 | 2.155 | 0.145 | 0.022 |
Residuals | 33013121.167 | 94 | 351203.417 | |||
[3] |
ANOVA - Reactionspeed | ||||||
---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | η²p | |
contrast1 | 756860.167 | 1 | 756860.167 | 2.155 | 0.145 | 0.022 |
Residuals | 33013121.167 | 94 | 351203.417 | |||
[3] |
ANOVA - Reactionspeed | |||||
---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | |
Condition | 50953720.222 | 2 | 25476860.111 | 50.847 | <.001 |
Residuals | 70647781.083 | 141 | 501048.093 | ||
[3] |
Post Hoc Comparisons - Condition | |||||||||
---|---|---|---|---|---|---|---|---|---|
Comparison | |||||||||
Condition | Condition | Mean Difference | SE | df | t | p | ptukey | pbonferroni | |
Happy-neutral | - | Angry-happy | -177.583 | 144.489 | 141.000 | -1.229 | 0.221 | 0.438 | 0.663 |
- | Neutral-happy (control) | -1341.250 | 144.489 | 141.000 | -9.283 | <.001 | <.001 | <.001 | |
Angry-happy | - | Neutral-happy (control) | -1163.667 | 144.489 | 141.000 | -8.054 | <.001 | <.001 | <.001 |
Note. Comparisons are based on estimated marginal means |
[4]
ANOVA - t2 | ||||||
---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | η²p | |
Overall model | 1040.681 | 2 | 520.340 | 1.398 | 0.250 | |
Condition | 1040.681 | 2 | 520.340 | 1.398 | 0.250 | 0.019 |
Residuals | 52470.625 | 141 | 372.132 | |||
[3] |
Post Hoc Comparisons - Condition | |||||||
---|---|---|---|---|---|---|---|
Comparison | |||||||
Condition | Condition | Mean Difference | SE | df | t | ptukey | |
Happy-neutral | - | Angry-happy | -5.833 | 3.938 | 141.000 | -1.481 | 0.303 |
- | Neutral-happy (control) | -0.271 | 3.938 | 141.000 | -0.069 | 0.997 | |
Angry-happy | - | Neutral-happy (control) | 5.563 | 3.938 | 141.000 | 1.413 | 0.337 |
Note. Comparisons are based on estimated marginal means |
[4]
ANOVA - DASSdistress | ||||||
---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | η²p | |
Overall model | 133.010 | 1 | 133.010 | 0.344 | 0.559 | |
contrast1 | 133.010 | 1 | 133.010 | 0.344 | 0.559 | 0.004 |
Residuals | 36393.229 | 94 | 387.162 | |||
[3] |
Descriptives | ||
---|---|---|
Condition | Reactionspeed | |
N | Happy-neutral | 48 |
Angry-happy | 48 | |
Neutral-happy (control) | 48 | |
Missing | Happy-neutral | 0 |
Angry-happy | 0 | |
Neutral-happy (control) | 0 | |
Mean | Happy-neutral | 1487.542 |
Angry-happy | 1665.125 | |
Neutral-happy (control) | 2828.792 | |
Median | Happy-neutral | 1383.000 |
Angry-happy | 1714.500 | |
Neutral-happy (control) | 2784.500 | |
Standard deviation | Happy-neutral | 552.576 |
Angry-happy | 630.132 | |
Neutral-happy (control) | 894.839 | |
Minimum | Happy-neutral | 530.000 |
Angry-happy | 634.000 | |
Neutral-happy (control) | 705.000 | |
Maximum | Happy-neutral | 2891.000 |
Angry-happy | 3091.000 | |
Neutral-happy (control) | 5564.000 | |
Skewness | Happy-neutral | 0.345 |
Angry-happy | 0.174 | |
Neutral-happy (control) | 0.392 | |
Std. error skewness | Happy-neutral | 0.343 |
Angry-happy | 0.343 | |
Neutral-happy (control) | 0.343 | |
Kurtosis | Happy-neutral | -0.472 |
Angry-happy | -0.897 | |
Neutral-happy (control) | 0.837 | |
Std. error kurtosis | Happy-neutral | 0.674 |
Angry-happy | 0.674 | |
Neutral-happy (control) | 0.674 | |
Shapiro-Wilk W | Happy-neutral | 0.976 |
Angry-happy | 0.962 | |
Neutral-happy (control) | 0.980 | |
Shapiro-Wilk p | Happy-neutral | 0.424 |
Angry-happy | 0.125 | |
Neutral-happy (control) | 0.564 |
ANOVA - Reactionspeed | |||||
---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | |
Condition | 50953720.222 | 2 | 25476860.111 | 50.847 | <.001 |
Residuals | 70647781.083 | 141 | 501048.093 | ||
[3] |
Homogeneity of Variances Test (Levene's) | |||
---|---|---|---|
F | df1 | df2 | p |
3.612 | 2 | 141 | 0.030 |
[3] |
ANOVA - SQRTSpeed | ||||||
---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | η² | |
Overall model | 5968.533 | 2 | 2984.266 | 47.072 | <.001 | |
Condition | 5968.533 | 2 | 2984.266 | 47.072 | <.001 | 0.400 |
Residuals | 8939.064 | 141 | 63.398 | |||
[3] |
Homogeneity of Variances Test (Levene's) | |||
---|---|---|---|
F | df1 | df2 | p |
0.256 | 2 | 141 | 0.775 |
[3] |
Estimated Marginal Means - Condition | ||||
---|---|---|---|---|
95% Confidence Interval | ||||
Condition | Mean | SE | Lower | Upper |
Happy-neutral | 37.892 | 1.149 | 35.620 | 40.164 |
Angry-happy | 40.044 | 1.149 | 37.772 | 42.316 |
Neutral-happy (control) | 52.497 | 1.149 | 50.225 | 54.769 |
[4]
ANOVA - … | |||||
---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | |
... | . | . | . | . | . |
Residuals | . | . | . | . | . |
[3] |
One-Way ANOVA (Welch's) | ||||
---|---|---|---|---|
F | df1 | df2 | p | |
Reactionspeed | 40.182 | 2 | 91.111 | <.001 |
ANOVA - LOG10dassdistress | |||||||
---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | η² | η²p | |
Condition | 0.044 | 2 | 0.022 | 0.187 | 0.829 | 0.003 | 0.003 |
Residuals | 16.487 | 141 | 0.117 | ||||
[3] |
ANOVA - t3 | |||||
---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | |
Condition | 25040.681 | 2 | 12520.340 | 125.506 | <.001 |
Residuals | 14065.958 | 141 | 99.759 | ||
[3] |
Homogeneity of Variances Test (Levene's) | |||
---|---|---|---|
F | df1 | df2 | p |
16.476 | 2 | 141 | <.001 |
[3] |
Model Info | |
---|---|
Info | |
Estimate | Linear model fit by OLS |
Call | SQRTSpeed ~ 1 + distress + Condition + distress:Condition |
R-squared | 0.522 |
Adj. R-squared | 0.505 |
[5] |
ANOVA Omnibus tests | |||||
---|---|---|---|---|---|
SS | df | F | p | η²p | |
Model | 7785.656 | 5 | 30.172 | <.001 | 0.522 |
distress | 1122.762 | 1 | 21.755 | <.001 | 0.136 |
Condition | 5993.055 | 2 | 58.063 | <.001 | 0.457 |
distress ✻ Condition | 689.718 | 2 | 6.682 | 0.002 | 0.088 |
Residuals | 7121.941 | 138 | |||
Total | 14907.597 | 143 |
Fixed Effects Parameter Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
95% Confidence Interval | |||||||||
Names | Effect | Estimate | SE | Lower | Upper | β | df | t | p |
(Intercept) | (Intercept) | 43.403 | 0.600 | 42.217 | 44.588 | 0.000 | 138 | 72.395 | <.001 |
distress1 | High - Low | 5.593 | 1.199 | 3.222 | 7.964 | 0.548 | 138 | 4.664 | <.001 |
Condition1 | Angry-happy - Happy-neutral | 1.946 | 1.467 | -0.954 | 4.847 | 0.191 | 138 | 1.327 | 0.187 |
Condition2 | Neutral-happy (control) - Happy-neutral | 14.587 | 1.469 | 11.682 | 17.492 | 1.429 | 138 | 9.930 | <.001 |
distress1 ✻ Condition1 | High - Low ✻ Angry-happy - Happy-neutral | 2.512 | 2.934 | -3.289 | 8.314 | 0.246 | 138 | 0.856 | 0.393 |
distress1 ✻ Condition2 | High - Low ✻ Neutral-happy (control) - Happy-neutral | -7.794 | 2.938 | -13.603 | -1.985 | -0.763 | 138 | -2.653 | 0.009 |
Simple effects of distress : Omnibus Tests | |||||
---|---|---|---|---|---|
Moderator levels | |||||
Condition | F | Num df | Den df | p | η²p |
. | . | . | . | . | . |
. | . | . | . | . | |
. | . | . | . | . | |
Note. Simple effects cannot be estimated. Refine the model or the covariates conditioning (if any) |
Simple effects of distress : Parameter estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Moderator levels | 95% Confidence Interval | ||||||||
Condition | contrast | Estimate | SE | Lower | Upper | β | df | t | p |
. | High - Low | . | . | . | . | . | . | . | . |
High - Low | . | . | . | . | . | . | . | . | |
High - Low | . | . | . | . | . | . | . | . |
distress | |||||
---|---|---|---|---|---|
95% Confidence Interval | |||||
distress | Mean | SE | df | Lower | Upper |
Low | 40.607 | 0.842 | 138.000 | 38.942 | 42.271 |
High | 46.199 | 0.854 | 138.000 | 44.511 | 47.887 |
Condition | |||||
---|---|---|---|---|---|
95% Confidence Interval | |||||
Condition | Mean | SE | df | Lower | Upper |
Happy-neutral | 37.892 | 1.037 | 138.000 | 35.842 | 39.942 |
Angry-happy | 39.838 | 1.038 | 138.000 | 37.786 | 41.890 |
Neutral-happy (control) | 52.479 | 1.041 | 138.000 | 50.421 | 54.536 |
Condition:distress | ||||||
---|---|---|---|---|---|---|
95% Confidence Interval | ||||||
Condition | distress | Mean | SE | df | Lower | Upper |
Happy-neutral | Low | 34.215 | 1.466 | 138.000 | 31.316 | 37.115 |
Angry-happy | Low | 34.905 | 1.498 | 138.000 | 31.943 | 37.867 |
Neutral-happy (control) | Low | 52.699 | 1.409 | 138.000 | 49.913 | 55.485 |
Happy-neutral | High | 41.569 | 1.466 | 138.000 | 38.669 | 44.468 |
Angry-happy | High | 44.771 | 1.437 | 138.000 | 41.930 | 47.612 |
Neutral-happy (control) | High | 52.258 | 1.532 | 138.000 | 49.230 | 55.287 |
Test for Homogeneity of Residual Variances (Levene's) | |||
---|---|---|---|
F | df1 | df2 | p |
0.798 | 5 | 138 | 0.553 |
Model Info | ||
---|---|---|
Info | ||
Model Type | Linear Model | OLS Model for continuous y |
Model | lm | SQRTSpeed ~ 1 + distress + Condition + distress:Condition |
Distribution | Gaussian | Normal distribution of residuals |
Omnibus Tests | F | |
Sample size | 144 | |
Converged | yes | |
Y transform | none | |
C.I. method | Wald | |
[5] |
Model Fit | |||||
---|---|---|---|---|---|
R² | Adj. R² | df | df (res) | F | p |
0.522 | 0.505 | 5 | 138 | 30.172 | <.001 |
[6] |
ANOVA Omnibus tests | |||||
---|---|---|---|---|---|
SS | df | F | p | η²p | |
Model | 7785.656 | 5 | 30.172 | <.001 | 0.522 |
distress | 1122.762 | 1 | 21.755 | <.001 | 0.136 |
Condition | 5993.055 | 2 | 58.063 | <.001 | 0.457 |
distress ✻ Condition | 689.718 | 2 | 6.682 | 0.002 | 0.088 |
Residuals | 7121.941 | 138 | |||
Total | 14907.597 | 143 |
Parameter Estimates (Coefficients) | |||||||||
---|---|---|---|---|---|---|---|---|---|
95% Confidence Intervals | |||||||||
Names | Effect | Estimate | SE | Lower | Upper | β | df | t | p |
(Intercept) | (Intercept) | 43.403 | 0.600 | 42.217 | 44.588 | -0.007 | 138 | 72.395 | <.001 |
distress1 | High - Low | 5.593 | 1.199 | 3.222 | 7.964 | 0.548 | 138 | 4.664 | <.001 |
Condition1 | Angry-happy - Happy-neutral | 1.946 | 1.467 | -0.954 | 4.847 | 0.191 | 138 | 1.327 | 0.187 |
Condition2 | Neutral-happy (control) - Happy-neutral | 14.587 | 1.469 | 11.682 | 17.492 | 1.429 | 138 | 9.930 | <.001 |
distress1 ✻ Condition1 | (High - Low) ✻ (Angry-happy - Happy-neutral) | 2.512 | 2.934 | -3.289 | 8.314 | 0.246 | 138 | 0.856 | 0.393 |
distress1 ✻ Condition2 | (High - Low) ✻ (Neutral-happy (control) - Happy-neutral) | -7.794 | 2.938 | -13.603 | -1.985 | -0.763 | 138 | -2.653 | 0.009 |
[7] |
ANOVA for Simple Effects of distress | |||||
---|---|---|---|---|---|
Moderator | |||||
Condition | F | Num df | Den df | p | η²p |
Happy-neutral | 12.573 | 1 | 138 | <.001 | 0.084 |
Angry-happy | 22.592 | 1 | 138 | <.001 | 0.141 |
Neutral-happy (control) | 0.045 | 1 | 138 | 0.833 | 0.000 |
Parameter Estimates for simple effects of distress | |||||||||
---|---|---|---|---|---|---|---|---|---|
Moderator | 95% Confidence Intervals | ||||||||
Condition | Effect | Estimate | SE | Lower | Upper | β | df | t | p |
Happy-neutral | High - Low | 7.353 | 2.074 | 3.253 | 11.454 | 0.720 | 138 | 3.546 | <.001 |
Angry-happy | High - Low | 9.866 | 2.076 | 5.761 | 13.970 | 0.966 | 138 | 4.753 | <.001 |
Neutral-happy (control) | High - Low | -0.441 | 2.081 | -4.556 | 3.674 | -0.043 | 138 | -0.212 | 0.833 |
Test for Homogeneity of Residual Variance | ||||
---|---|---|---|---|
Test | Statistics | df1 | df2 | p |
Breusch-Pagan Test | 6.309 | 5 | 0.277 | |
Levene's Test | 0.798 | 5 | 138 | 0.553 |
Note. Levene's test is done only for factors. |
[1] The jamovi project (2024). jamovi. (Version 2.6) [Computer Software]. Retrieved from https://www.jamovi.org.
[2] R Core Team (2024). R: A Language and environment for statistical computing. (Version 4.4) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from CRAN snapshot 2024-08-07).
[3] Fox, J., & Weisberg, S. (2023). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.
[4] Lenth, R. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means. [R package]. Retrieved from https://cran.r-project.org/package=emmeans.
[5] Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module]. Retrieved from https://gamlj.github.io/.
[6] Gallucci, M. (2020). Model goodness of fit in GAMLj. . link.
[7] Lüdecke, Ben-Shachar, Patil & Makowski (2020). Extracting, Computing and Exploring the Parameters of Statistical Models using R. CRAN. link.