Results

ANOVA

ANOVA - Reactionspeed
 Sum of SquaresdfMean SquareFpη²p
contrast1756860.1671756860.1672.1550.1450.022
Residuals33013121.16794351203.417   
[3]

 

ANOVA

ANOVA - Reactionspeed
 Sum of SquaresdfMean SquareFpη²p
contrast1756860.1671756860.1672.1550.1450.022
Residuals33013121.16794351203.417   
[3]

 

Estimated Marginal Means

contrast1

[4]

ANOVA

ANOVA - Reactionspeed
 Sum of SquaresdfMean SquareFp
Condition50953720.222225476860.11150.847<.001
Residuals70647781.083141501048.093  
[3]

 

Post Hoc Tests

Post Hoc Comparisons - Condition
Comparison
Condition ConditionMean DifferenceSEdftpptukeypbonferroni
Happy-neutral-Angry-happy-177.583144.489141.000-1.2290.2210.4380.663
-Neutral-happy (control)-1341.250144.489141.000-9.283<.001<.001<.001
Angry-happy-Neutral-happy (control)-1163.667144.489141.000-8.054<.001<.001<.001
Note. Comparisons are based on estimated marginal means

 

[4]

ANOVA

ANOVA - t2
 Sum of SquaresdfMean SquareFpη²p
Overall model1040.6812520.3401.3980.250 
Condition1040.6812520.3401.3980.2500.019
Residuals52470.625141372.132   
[3]

 

Post Hoc Tests

Post Hoc Comparisons - Condition
Comparison
Condition ConditionMean DifferenceSEdftptukey
Happy-neutral-Angry-happy-5.8333.938141.000-1.4810.303
-Neutral-happy (control)-0.2713.938141.000-0.0690.997
Angry-happy-Neutral-happy (control)5.5633.938141.0001.4130.337
Note. Comparisons are based on estimated marginal means

 

[4]

ANOVA

ANOVA - DASSdistress
 Sum of SquaresdfMean SquareFpη²p
Overall model133.0101133.0100.3440.559 
contrast1133.0101133.0100.3440.5590.004
Residuals36393.22994387.162   
[3]

 

Descriptives

Descriptives
 ConditionReactionspeed
NHappy-neutral48
Angry-happy48
Neutral-happy (control)48
MissingHappy-neutral0
Angry-happy0
Neutral-happy (control)0
MeanHappy-neutral1487.542
Angry-happy1665.125
Neutral-happy (control)2828.792
MedianHappy-neutral1383.000
Angry-happy1714.500
Neutral-happy (control)2784.500
Standard deviationHappy-neutral552.576
Angry-happy630.132
Neutral-happy (control)894.839
MinimumHappy-neutral530.000
Angry-happy634.000
Neutral-happy (control)705.000
MaximumHappy-neutral2891.000
Angry-happy3091.000
Neutral-happy (control)5564.000
SkewnessHappy-neutral0.345
Angry-happy0.174
Neutral-happy (control)0.392
Std. error skewnessHappy-neutral0.343
Angry-happy0.343
Neutral-happy (control)0.343
KurtosisHappy-neutral-0.472
Angry-happy-0.897
Neutral-happy (control)0.837
Std. error kurtosisHappy-neutral0.674
Angry-happy0.674
Neutral-happy (control)0.674
Shapiro-Wilk WHappy-neutral0.976
Angry-happy0.962
Neutral-happy (control)0.980
Shapiro-Wilk pHappy-neutral0.424
Angry-happy0.125
Neutral-happy (control)0.564

 

Plots

Reactionspeed

ANOVA

ANOVA - Reactionspeed
 Sum of SquaresdfMean SquareFp
Condition50953720.222225476860.11150.847<.001
Residuals70647781.083141501048.093  
[3]

 

Assumption Checks

Homogeneity of Variances Test (Levene's)
Fdf1df2p
3.61221410.030
[3]

 

ANOVA

ANOVA - SQRTSpeed
 Sum of SquaresdfMean SquareFpη²
Overall model5968.53322984.26647.072<.001 
Condition5968.53322984.26647.072<.0010.400
Residuals8939.06414163.398   
[3]

 

Assumption Checks

Homogeneity of Variances Test (Levene's)
Fdf1df2p
0.25621410.775
[3]

 

Estimated Marginal Means

Condition

Estimated Marginal Means - Condition
95% Confidence Interval
ConditionMeanSELowerUpper
Happy-neutral37.8921.14935.62040.164
Angry-happy40.0441.14937.77242.316
Neutral-happy (control)52.4971.14950.22554.769

 

[4]

ANOVA

ANOVA - …
 Sum of SquaresdfMean SquareFp
........
Residuals.....
[3]

 

One-Way ANOVA

One-Way ANOVA (Welch's)
 Fdf1df2p
Reactionspeed40.182291.111<.001

 

ANOVA

ANOVA - LOG10dassdistress
 Sum of SquaresdfMean SquareFpη²η²p
Condition0.04420.0220.1870.8290.0030.003
Residuals16.4871410.117    
[3]

 

ANOVA

ANOVA - t3
 Sum of SquaresdfMean SquareFp
Condition25040.681212520.340125.506<.001
Residuals14065.95814199.759  
[3]

 

Assumption Checks

Homogeneity of Variances Test (Levene's)
Fdf1df2p
16.4762141<.001
[3]

 

General Linear Model

Model Info
Info 
EstimateLinear model fit by OLS
CallSQRTSpeed ~ 1 + distress + Condition + distress:Condition
R-squared0.522
Adj. R-squared0.505
[5]

 

Model Results

ANOVA Omnibus tests
 SSdfFpη²p
Model7785.656530.172<.0010.522
distress1122.762121.755<.0010.136
Condition5993.055258.063<.0010.457
distress ✻ Condition689.71826.6820.0020.088
Residuals7121.941138   
Total14907.597143   

 

Fixed Effects Parameter Estimates
95% Confidence Interval
NamesEffectEstimateSELowerUpperβdftp
(Intercept)(Intercept)43.4030.60042.21744.5880.00013872.395<.001
distress1High - Low5.5931.1993.2227.9640.5481384.664<.001
Condition1Angry-happy - Happy-neutral1.9461.467-0.9544.8470.1911381.3270.187
Condition2Neutral-happy (control) - Happy-neutral14.5871.46911.68217.4921.4291389.930<.001
distress1 ✻ Condition1High - Low ✻ Angry-happy - Happy-neutral2.5122.934-3.2898.3140.2461380.8560.393
distress1 ✻ Condition2High - Low ✻ Neutral-happy (control) - Happy-neutral-7.7942.938-13.603-1.985-0.763138-2.6530.009

 

Simple Effects

Simple effects of distress : Omnibus Tests
Moderator levels
ConditionFNum dfDen dfpη²p
......
.....
.....
Note. Simple effects cannot be estimated. Refine the model or the covariates conditioning (if any)

 

Simple effects of distress : Parameter estimates
Moderator levels95% Confidence Interval
ConditioncontrastEstimateSELowerUpperβdftp
.High - Low........
High - Low........
High - Low........

 

Estimated Marginal Means

distress
95% Confidence Interval
distressMeanSEdfLowerUpper
Low40.6070.842138.00038.94242.271
High46.1990.854138.00044.51147.887

 

Condition
95% Confidence Interval
ConditionMeanSEdfLowerUpper
Happy-neutral37.8921.037138.00035.84239.942
Angry-happy39.8381.038138.00037.78641.890
Neutral-happy (control)52.4791.041138.00050.42154.536

 

Condition:distress
95% Confidence Interval
ConditiondistressMeanSEdfLowerUpper
Happy-neutralLow34.2151.466138.00031.31637.115
Angry-happyLow34.9051.498138.00031.94337.867
Neutral-happy (control)Low52.6991.409138.00049.91355.485
Happy-neutralHigh41.5691.466138.00038.66944.468
Angry-happyHigh44.7711.437138.00041.93047.612
Neutral-happy (control)High52.2581.532138.00049.23055.287

 

Plots

Assumption Checks

Test for Homogeneity of Residual Variances (Levene's)
Fdf1df2p
0.79851380.553

 

General Linear Model

Model Info
Info  
Model TypeLinear ModelOLS Model for continuous y
ModellmSQRTSpeed ~ 1 + distress + Condition + distress:Condition
DistributionGaussianNormal distribution of residuals
Omnibus TestsF 
Sample size144 
Convergedyes 
Y transformnone 
C.I. methodWald 
[5]

 

Model Results

Model Fit
Adj. R²dfdf (res)Fp
0.5220.505513830.172<.001
[6]

 

ANOVA Omnibus tests
 SSdfFpη²p
Model7785.656530.172<.0010.522
distress1122.762121.755<.0010.136
Condition5993.055258.063<.0010.457
distress ✻ Condition689.71826.6820.0020.088
Residuals7121.941138   
Total14907.597143   

 

Parameter Estimates (Coefficients)
95% Confidence Intervals
NamesEffectEstimateSELowerUpperβdftp
(Intercept)(Intercept)43.4030.60042.21744.588-0.00713872.395<.001
distress1High - Low5.5931.1993.2227.9640.5481384.664<.001
Condition1Angry-happy - Happy-neutral1.9461.467-0.9544.8470.1911381.3270.187
Condition2Neutral-happy (control) - Happy-neutral14.5871.46911.68217.4921.4291389.930<.001
distress1 ✻ Condition1(High - Low) ✻ (Angry-happy - Happy-neutral)2.5122.934-3.2898.3140.2461380.8560.393
distress1 ✻ Condition2(High - Low) ✻ (Neutral-happy (control) - Happy-neutral)-7.7942.938-13.603-1.985-0.763138-2.6530.009
[7]

 

Simple Effects

ANOVA for Simple Effects of distress
Moderator
ConditionFNum dfDen dfpη²p
Happy-neutral12.5731138<.0010.084
Angry-happy22.5921138<.0010.141
Neutral-happy (control)0.04511380.8330.000

 

Parameter Estimates for simple effects of distress
Moderator 95% Confidence Intervals
ConditionEffectEstimateSELowerUpperβdftp
Happy-neutralHigh - Low7.3532.0743.25311.4540.7201383.546<.001
Angry-happyHigh - Low9.8662.0765.76113.9700.9661384.753<.001
Neutral-happy (control)High - Low-0.4412.081-4.5563.674-0.043138-0.2120.833

 

Results Plots

Assumption Checks

Test for Homogeneity of Residual Variance
TestStatisticsdf1df2p
Breusch-Pagan Test6.3095 0.277
Levene's Test0.79851380.553
Note. Levene's test is done only for factors.

 

References

[1] The jamovi project (2024). jamovi. (Version 2.6) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2024). R: A Language and environment for statistical computing. (Version 4.4) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from CRAN snapshot 2024-08-07).

[3] Fox, J., & Weisberg, S. (2023). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.

[4] Lenth, R. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means. [R package]. Retrieved from https://cran.r-project.org/package=emmeans.

[5] Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module]. Retrieved from https://gamlj.github.io/.

[6] Gallucci, M. (2020). Model goodness of fit in GAMLj. . link.

[7] Lüdecke, Ben-Shachar, Patil & Makowski (2020). Extracting, Computing and Exploring the Parameters of Statistical Models using R. CRAN. link.