Results

Reliability Analysis PAS

Scale Reliability Statistics
 Cronbach's α
scale0.788
[3]

 

Item Reliability Statistics
 Item-rest correlation
PAS10.682
PAS20.673
PAS30.634
PAS40.614
PAS50.304

 

Structural Equation Modelling PAS

Models Info
   
Estimation MethodDWLS.
Optimization MethodNLMINB
Number of observations209
Free parameters25
Standard errorsRobust
Scaled testMean adjusted scaled and shifted
ConvergedTRUE
Iterations14
 
ModelPAS=~PAS1+PAS2+PAS3+PAS4+PAS5
 
Note. Variable (PAS1,PAS2,PAS3,PAS4,PAS5) has been coerced to ordered type.
Note. lavaan->lav_model_vcov(): The variance-covariance matrix of the estimated parameters (vcov) does not appear to be positive definite! The smallest eigenvalue (= -6.621935e-17) is smaller than zero. This may be a symptom that the model is not identified.
[4] [5]

 

Overall Tests

Model tests
Labeldfp
User Model51.1535<.001
Baseline Model5981.50110<.001
Scaled User64.0775<.001
Scaled Baseline4295.70910<.001

 

Fit indices
95% Confidence Intervals
TypeSRMRRMSEALowerUpperRMSEA p
Classical0.0970.2110.1610.265<.001
Robust0.0630.2980.2180.385<.001
Scaled0.0630.2380.1880.292<.001

 

User model versus baseline model
 ModelScaledRobust
Comparative Fit Index (CFI)0.9920.9860.871
Tucker-Lewis Index (TLI)0.9850.9720.742
Bentler-Bonett Non-normed Fit Index (NNFI)0.9850.9720.742
Relative Noncentrality Index (RNI)0.9920.9860.871
Bentler-Bonett Normed Fit Index (NFI)0.9910.985 
Bollen's Relative Fit Index (RFI)0.9830.970 
Bollen's Incremental Fit Index (IFI)0.9920.986 
Parsimony Normed Fit Index (PNFI)0.4960.493 

 

Additional fit indices
 Model
Hoelter Critical N (CN), α=0.0546.015
Hoelter Critical N (CN), α=0.0162.344
Goodness of Fit Index (GFI)0.993
Adjusted Goodness of Fit Index (AGFI)0.959
Parsimony Goodness of Fit Index (PGFI)0.166
McDonald Fit Index (MFI)0.895
Expected Cross-Validation Index (ECVI).
Loglikelihood user model (H0).
Loglikelihood unrestricted model (H1).
Akaike (AIC).
Bayesian (BIC).
Sample-size adjusted Bayesian (SABIC).

 

Estimates

Measurement model
95% Confidence Intervals
LatentObservedEstimateSELowerUpperβzp
PASPAS11.0000.0001.0001.0000.961  
PAS20.9880.0340.9221.0550.95029.130<.001
PAS3-0.8020.034-0.868-0.736-0.771-23.817<.001
PAS4-0.7080.042-0.790-0.626-0.681-16.925<.001
PAS5-0.3860.057-0.497-0.275-0.371-6.824<.001

 

Variances and Covariances
95% Confidence Intervals
Variable 1Variable 2EstimateSELowerUpperβzp
PAS1PAS10.0760.0000.0760.0760.076  
PAS2PAS20.0980.0000.0980.0980.098  
PAS3PAS30.4050.0000.4050.4050.405  
PAS4PAS40.5360.0000.5360.5360.536  
PAS5PAS50.8620.0000.8620.8620.862  
PASPAS0.9240.0340.8570.9911.00027.110<.001

 

Intercepts
95% Confidence Intervals
VariableInterceptSELowerUpperzp
PAS10.0000.0000.0000.000  
PAS20.0000.0000.0000.000  
PAS30.0000.0000.0000.000  
PAS40.0000.0000.0000.000  
PAS50.0000.0000.0000.000  
PAS0.0000.0000.0000.000  

 

Thresholds
95% Confidence Intervals
VariableStepThresholdsSELowerUpperzp
PAS1t10.0300.087-0.1400.2000.3450.730
PAS1t20.8550.1000.6601.0508.596<.001
PAS1t31.7710.1601.4572.08511.068<.001
PAS1t42.3430.2631.8272.8598.901<.001
PAS2t10.0060.087-0.1640.1760.0690.945
PAS2t20.8730.1000.6771.0698.722<.001
PAS2t31.9790.1881.6102.34710.519<.001
PAS2t42.3430.2631.8272.8598.901<.001
PAS3t1-2.1870.226-2.631-1.744-9.671<.001
PAS3t2-1.4630.131-1.719-1.206-11.187<.001
PAS3t3-0.0780.087-0.2490.092-0.8970.370
PAS3t40.9450.1030.7441.1469.214<.001
PAS4t1-2.1870.226-2.631-1.744-9.671<.001
PAS4t2-1.3650.124-1.608-1.122-11.027<.001
PAS4t3-0.3230.089-0.497-0.150-3.651<.001
PAS4t40.9840.1040.7801.1879.453<.001
PAS5t1-1.6200.144-1.902-1.337-11.240<.001
PAS5t2-0.9840.104-1.187-0.780-9.453<.001
PAS5t3-0.0540.087-0.2240.116-0.6210.535
PAS5t40.8900.1010.6931.0888.846<.001

 

Additional outputs

Reliability indices
VariableαOrdinal αω₁ω₂ω₃AVE
PAS-0.144-0.3960.1180.1180.0750.604
[6]

 

Modifcation indices

Modification indices
   Modif. indexEPCsEPC (LV)sEPC (all)sEPC (nox)
PAS1~~PAS231.001-0.489-0.489-5.681-5.681
PAS4~~PAS527.666-0.321-0.321-0.472-0.472
PAS3~~PAS415.996-0.213-0.213-0.458-0.458
PAS2~~PAS412.906-0.271-0.271-1.185-1.185
PAS1~~PAS411.607-0.250-0.250-1.240-1.240

 

Path Model

Path diagrams

[7]

Reliability Analysis MIH

Scale Reliability Statistics
 Cronbach's α
scale0.912
[3]

 

Item Reliability Statistics
If item dropped
 Item-rest correlationCronbach's α
MIH10.6850.903
MIH20.5300.909
MIH30.6080.906
MIH40.5550.908
MIH50.6730.904
MIH60.5870.907
MIH70.3960.915
MIH80.7690.900
MIH90.5980.907
MIH100.5960.907
MIH110.6420.905
MIH120.7580.901
MIH130.7560.901
MIH140.6490.905

 

Structural Equation Modelling

Models Info
   
Estimation MethodDWLS.
Optimization MethodNLMINB
Number of observations209
Free parameters70
Standard errorsRobust
Scaled testMean adjusted scaled and shifted
ConvergedTRUE
Iterations31
 
ModelMIH=~MIH1+MIH2+MIH3+MIH4+MIH5+MIH6+MIH7+MIH8+MIH9+MIH10+MIH11+MIH12+MIH13+MIH14
 
Note. Variable (MIH1,MIH2,MIH3,MIH4,MIH5,MIH6,MIH7,MIH8,MIH9,MIH10,MIH11,MIH12,MIH13,MIH14) has been coerced to ordered type.
[4] [5]

 

Overall Tests

Model tests
Labeldfp
User Model447.21177<.001
Baseline Model13888.59991<.001
Scaled User586.07277<.001
Scaled Baseline4584.89791<.001

 

Fit indices
95% Confidence Intervals
TypeSRMRRMSEALowerUpperRMSEA p
Classical0.0870.1520.1390.166<.001
Robust0.0700.1660.1520.181<.001
Scaled0.0700.1780.1650.192<.001

 

User model versus baseline model
 ModelScaledRobust
Comparative Fit Index (CFI)0.9730.8870.778
Tucker-Lewis Index (TLI)0.9680.8660.738
Bentler-Bonett Non-normed Fit Index (NNFI)0.9680.8660.738
Relative Noncentrality Index (RNI)0.9730.8870.778
Bentler-Bonett Normed Fit Index (NFI)0.9680.872 
Bollen's Relative Fit Index (RFI)0.9620.849 
Bollen's Incremental Fit Index (IFI)0.9730.887 
Parsimony Normed Fit Index (PNFI)0.8190.738 

 

Additional fit indices
 Model
Hoelter Critical N (CN), α=0.0546.806
Hoelter Critical N (CN), α=0.0151.590
Goodness of Fit Index (GFI)0.975
Adjusted Goodness of Fit Index (AGFI)0.953
Parsimony Goodness of Fit Index (PGFI)0.511
McDonald Fit Index (MFI)0.411
Expected Cross-Validation Index (ECVI).
Loglikelihood user model (H0).
Loglikelihood unrestricted model (H1).
Akaike (AIC).
Bayesian (BIC).
Sample-size adjusted Bayesian (SABIC).

 

Estimates

Measurement model
95% Confidence Intervals
LatentObservedEstimateSELowerUpperβzp
MIHMIH11.0000.0001.0001.0000.731  
MIH20.7830.0580.6700.8960.57213.552<.001
MIH30.9130.0520.8121.0140.66717.687<.001
MIH4-0.8730.056-0.983-0.763-0.638-15.522<.001
MIH5-1.0080.045-1.097-0.919-0.737-22.294<.001
MIH61.0020.0430.9171.0870.73323.052<.001
MIH7-0.5740.070-0.711-0.437-0.420-8.210<.001
MIH81.1460.0481.0521.2400.83823.824<.001
MIH9-0.9350.054-1.041-0.829-0.683-17.246<.001
MIH101.0060.0480.9121.0990.73521.117<.001
MIH11-0.9270.047-1.019-0.834-0.677-19.601<.001
MIH121.2300.0511.1301.3300.89924.097<.001
MIH131.2290.0531.1261.3320.89923.399<.001
MIH140.9800.0510.8801.0800.71719.231<.001

 

Variances and Covariances
95% Confidence Intervals
Variable 1Variable 2EstimateSELowerUpperβzp
MIH1MIH10.4650.0000.4650.4650.465  
MIH2MIH20.6720.0000.6720.6720.672  
MIH3MIH30.5550.0000.5550.5550.555  
MIH4MIH40.5930.0000.5930.5930.593  
MIH5MIH50.4570.0000.4570.4570.457  
MIH6MIH60.4630.0000.4630.4630.463  
MIH7MIH70.8240.0000.8240.8240.824  
MIH8MIH80.2980.0000.2980.2980.298  
MIH9MIH90.5330.0000.5330.5330.533  
MIH10MIH100.4590.0000.4590.4590.459  
MIH11MIH110.5410.0000.5410.5410.541  
MIH12MIH120.1920.0000.1920.1920.192  
MIH13MIH130.1920.0000.1920.1920.192  
MIH14MIH140.4860.0000.4860.4860.486  
MIHMIH0.5350.0440.4480.6211.00012.060<.001

 

Intercepts
95% Confidence Intervals
VariableInterceptSELowerUpperzp
MIH10.0000.0000.0000.000  
MIH20.0000.0000.0000.000  
MIH30.0000.0000.0000.000  
MIH40.0000.0000.0000.000  
MIH50.0000.0000.0000.000  
MIH60.0000.0000.0000.000  
MIH70.0000.0000.0000.000  
MIH80.0000.0000.0000.000  
MIH90.0000.0000.0000.000  
MIH100.0000.0000.0000.000  
MIH110.0000.0000.0000.000  
MIH120.0000.0000.0000.000  
MIH130.0000.0000.0000.000  
MIH140.0000.0000.0000.000  
MIH0.0000.0000.0000.000  

 

Thresholds
95% Confidence Intervals
VariableStepThresholdsSELowerUpperzp
MIH1t1-1.7710.160-2.085-1.457-11.068<.001
MIH1t2-0.8730.100-1.069-0.677-8.722<.001
MIH1t30.1870.0870.0160.3582.1380.033
MIH1t41.1530.1120.9351.37210.339<.001
MIH2t1-1.4990.134-1.760-1.237-11.221<.001
MIH2t2-0.8050.098-0.997-0.613-8.215<.001
MIH2t30.3230.0890.1500.4973.651<.001
MIH2t41.3060.1201.0711.54210.884<.001
MIH3t1-1.7160.154-2.018-1.415-11.154<.001
MIH3t2-0.9640.103-1.167-0.762-9.334<.001
MIH3t30.0540.087-0.1160.2240.6210.535
MIH3t41.2010.1140.9781.42510.536<.001
MIH4t1-1.3960.126-1.643-1.149-11.089<.001
MIH4t2-0.5620.092-0.742-0.381-6.103<.001
MIH4t30.4800.0910.3020.6575.291<.001
MIH4t41.1530.1120.9351.37210.339<.001
MIH5t1-1.0650.107-1.275-0.854-9.912<.001
MIH5t2-0.0660.087-0.2360.104-0.7590.448
MIH5t30.9270.1020.7271.1269.093<.001
MIH5t41.5770.1401.3021.85211.249<.001
MIH6t1-1.1770.113-1.398-0.956-10.439<.001
MIH6t2-0.6190.093-0.802-0.436-6.640<.001
MIH6t30.2360.0880.0640.4082.6890.007
MIH6t41.0030.1050.7981.2099.570<.001
MIH7t1-0.2240.088-0.396-0.052-2.5510.011
MIH7t20.4660.0900.2890.6435.155<.001
MIH7t31.0860.1080.8741.29810.023<.001
MIH7t41.4290.1281.1771.68011.142<.001
MIH8t1-1.1300.110-1.347-0.914-10.236<.001
MIH8t2-0.5070.091-0.685-0.328-5.562<.001
MIH8t30.7560.0970.5670.9457.828<.001
MIH8t41.5770.1401.3021.85211.249<.001
MIH9t1-1.6200.144-1.902-1.337-11.240<.001
MIH9t2-0.9840.104-1.187-0.780-9.453<.001
MIH9t30.2980.0880.1250.4713.376<.001
MIH9t41.2260.1151.0001.45210.630<.001
MIH10t1-1.3060.120-1.542-1.071-10.884<.001
MIH10t2-0.5620.092-0.742-0.381-6.103<.001
MIH10t30.3620.0890.1870.5364.062<.001
MIH10t41.1770.1130.9561.39810.439<.001
MIH11t1-1.1770.113-1.398-0.956-10.439<.001
MIH11t2-0.3360.089-0.510-0.162-3.788<.001
MIH11t30.5620.0920.3810.7426.103<.001
MIH11t41.2010.1140.9781.42510.536<.001
MIH12t1-1.8320.167-2.160-1.504-10.943<.001
MIH12t2-0.8900.101-1.088-0.693-8.846<.001
MIH12t30.2110.0880.0400.3832.4140.016
MIH12t41.4290.1281.1771.68011.142<.001
MIH13t1-1.6660.149-1.957-1.375-11.210<.001
MIH13t2-0.8730.100-1.069-0.677-8.722<.001
MIH13t30.2860.0880.1130.4593.2390.001
MIH13t41.3960.1261.1491.64311.089<.001
MIH14t1-1.1300.110-1.347-0.914-10.236<.001
MIH14t2-0.4130.090-0.589-0.238-4.609<.001
MIH14t30.7090.0950.5220.8967.436<.001
MIH14t41.6200.1441.3371.90211.240<.001

 

Additional outputs

Reliability indices
VariableαOrdinal αω₁ω₂ω₃AVE
MIH0.2580.3490.5730.5730.5500.519
[6]

 

Modifcation indices

Modification indices
   Modif. indexEPCsEPC (LV)sEPC (all)sEPC (nox)
MIH6~~MIH10238.295-0.498-0.498-1.079-1.079
MIH12~~MIH1370.164-0.257-0.257-1.339-1.339
MIH4~~MIH936.788-0.262-0.262-0.465-0.465
MIH10~~MIH1217.5750.2140.2140.7210.721
MIH10~~MIH1316.5220.2000.2000.6720.672
MIH8~~MIH913.4430.1440.1440.3620.362
MIH1~~MIH213.260-0.174-0.174-0.311-0.311
MIH4~~MIH511.024-0.164-0.164-0.315-0.315
MIH6~~MIH1210.7860.1590.1590.5350.535
MIH4~~MIH610.747-0.213-0.213-0.407-0.407
MIH6~~MIH810.4800.1720.1720.4620.462

 

Path Model

Path diagrams

[7]

References

[1] The jamovi project (2024). jamovi. (Version 2.6) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2024). R: A Language and environment for statistical computing. (Version 4.4) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from CRAN snapshot 2024-08-07).

[3] Revelle, W. (2023). psych: Procedures for Psychological, Psychometric, and Personality Research. [R package]. Retrieved from https://cran.r-project.org/package=psych.

[4] Gallucci, M., Jentschke, S. (2021). SEMLj: jamovi SEM Analysis. [jamovi module]. For help please visit https://semlj.github.io/.

[5] Rosseel, Y. (2019). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. link.

[6] Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., Rosseel, Y., Miller, P., Quick, C., Garnier-Villarreal, M., Selig, J., Boulton, A., Preacher, K., Coffman, D., Rhemtulla, M., Robitzsch, A., Enders, C., Arslan, R., Clinton, B., Panko, P., Merkle, E., Chesnut, S., Byrnes, J., Rights, J. D., Longo, Y., Mansolf, M., Ben-Shachar, M. S., Rönkkö, M. (2019). semTools: Useful Tools for Structural Equation Modeling. [R Package]. Retrieved from https://CRAN.R-project.org/package=semTools.

[7] Epskamp S. , Stuber S., Nak J., Veenman M,, Jorgensen T.D. (2019). semPlot: Path Diagrams and Visual Analysis of Various SEM Packages' Output. [R Package]. Retrieved from https://CRAN.R-project.org/package=semPlot.