Results

Structural Equation Modelling

Models Info
   
Estimation MethodML.
Optimization MethodNLMINB
Number of observations305
Free parameters51
Standard errorsStandard
Scaled testNone
ConvergedTRUE
Iterations136
 
ModelCLF =~ cr1 + cr2 + cr3 + cr4 +
f1 + f2 + f3 + f4 +
pp1 + pp2 + pp3 + pp4
CR =~ cr1 + cr2 + cr3 + cr4
FB =~ f1 + f2 + f3 + f4
PP =~ pp1 + pp2 + pp3 + pp4
CLF ~~ 0*CR
CLF ~~ 0*FB
CLF ~~ 0*PP
 
[3] [4]

 

Syntax examples
AimExampleOutcome
Constraints  
Equality constraintp1==p2Constrain the estimates of p1 and p2 to be equal
Linear constraintp1+p2==2Constrain the estimates of p1 and p2 to be equal to 2
Linear constraintp1+p2+p3==2Constrain the estimates for p1,p2, and p3
Constrain coefficientsp1==0Fix the coefficient p1 to 0
Inequality Constraintp1>0Estimate the coefficient p1 as larger than 0
Inequality Constraintp1<3Estimate the coefficient p1 as smaller than 3
Constrain interceptsy1~0Fix the y1 intercept to 0
Constrain interceptsy1~1*0Fix the y1 intercept to 1
Non linear constraintp1*p2=0Constrain the estimates such that p1*p2 equals 0
Defined Parameters  
Linear estimatesdp:=p1+p2p1 and p2 are free, and their sum is estimated and tested
Linear estimatesdp:=(p1+p2)-p3p1,p2, and p3 are free, and the specified function is estimated and tested
Non linear estimatesaname:=p1^2Estimate and test the square of p1

 

Overall Tests

Model tests
Labeldfp
User Model105.55439<.001
Baseline Model2231.04266<.001

 

Fit indices
95% Confidence Intervals
SRMRRMSEALowerUpperRMSEA p
0.0370.0750.0580.0920.009

 

User model versus baseline model
 Model
Comparative Fit Index (CFI)0.969
Tucker-Lewis Index (TLI)0.948
Bentler-Bonett Non-normed Fit Index (NNFI)0.948
Relative Noncentrality Index (RNI)0.969
Bentler-Bonett Normed Fit Index (NFI)0.953
Bollen's Relative Fit Index (RFI)0.920
Bollen's Incremental Fit Index (IFI)0.970
Parsimony Normed Fit Index (PNFI)0.563

 

Additional fit indices
 Model
Hoelter Critical N (CN), α=0.05158.687
Hoelter Critical N (CN), α=0.01181.386
Goodness of Fit Index (GFI)0.992
Adjusted Goodness of Fit Index (AGFI)0.981
Parsimony Goodness of Fit Index (PGFI)0.430
McDonald Fit Index (MFI)0.897
Expected Cross-Validation Index (ECVI)0.681
Loglikelihood user model (H0)-4153.357
Loglikelihood unrestricted model (H1)-4100.579
Akaike (AIC)8408.713
Bayesian (BIC)8598.449
Sample-size adjusted Bayesian (SABIC)8436.702

 

Estimates

Measurement model
95% Confidence Intervals
LatentObservedEstimateSELowerUpperβzp
CLFcr11.0000.0001.0001.0000.123  
cr21.1120.3670.3921.8310.1313.0290.002
cr30.2220.515-0.7871.2320.0260.4320.666
cr40.8530.472-0.0721.7790.0951.8070.071
f10.4370.907-1.3402.2150.0470.4820.630
f2-0.4550.882-2.1831.273-0.047-0.5160.606
f30.8651.006-1.1082.8370.0940.8590.390
f40.6530.861-1.0342.3410.0760.7590.448
pp1-2.8551.756-6.2970.587-0.392-1.6250.104
pp22.0522.646-3.1357.2380.2140.7750.438
pp3-4.6042.780-10.0530.845-0.608-1.6560.098
pp40.3952.174-3.8664.6570.0410.1820.856
CRcr11.0000.0001.0001.0000.892  
cr21.0460.0500.9481.1430.89021.041<.001
cr30.8890.0570.7781.0000.74615.731<.001
cr40.8800.0600.7620.9980.70814.653<.001
FBf11.0000.0001.0001.0000.862  
f21.0980.0540.9931.2040.90720.447<.001
f30.9600.0510.8601.0600.84518.845<.001
f40.8000.0520.6980.9010.74715.469<.001
PPpp11.0000.0001.0001.0000.553  
pp22.2160.5541.1313.3010.9334.003<.001
pp31.1930.1410.9161.4700.6358.447<.001
pp42.0380.4031.2492.8270.8505.061<.001

 

Variances and Covariances
95% Confidence Intervals
Variable 1Variable 2EstimateSELowerUpperβzp
CLFCR0.0000.0000.0000.0000.000  
CLFFB0.0000.0000.0000.0000.000  
CLFPP0.0000.0000.0000.0000.000  
cr1cr10.1660.0240.1180.2140.1906.787<.001
cr2cr20.1820.0270.1290.2340.1906.796<.001
cr3cr30.4360.0400.3570.5150.44210.774<.001
cr4cr40.5250.0470.4320.6170.49011.124<.001
f1f10.2960.0330.2310.3610.2558.941<.001
f2f20.2220.0330.1580.2860.1756.806<.001
f3f30.3090.0330.2440.3740.2779.298<.001
f4f40.4320.0400.3540.5090.43610.901<.001
pp1pp10.3820.0520.2800.4840.5417.355<.001
pp2pp20.1010.134-0.1620.3640.0830.7500.453
pp3pp30.1730.096-0.0150.3620.2281.8000.072
pp4pp40.3430.0850.1750.5100.2774.014<.001
CLFCLF0.0130.015-0.0160.0431.0000.8880.375
CRCR0.6940.0720.5530.8351.0009.668<.001
FBFB0.8640.0940.6801.0481.0009.191<.001
PPPP0.2150.0820.0550.3761.0002.6270.009
CRFB-0.0520.049-0.1480.044-0.067-1.0560.291
CRPP-0.0240.029-0.0800.033-0.061-0.8270.408
FBPP0.1150.0340.0490.1810.2673.421<.001

 

Intercepts
95% Confidence Intervals
VariableInterceptSELowerUpperzp
cr13.6130.0543.5083.71867.524<.001
cr23.4750.0563.3663.58562.025<.001
cr33.2330.0573.1213.34456.882<.001
cr43.1410.0593.0253.25752.983<.001
f13.3410.0623.2203.46254.118<.001
f23.2590.0643.1333.38550.558<.001
f33.4200.0603.3013.53856.541<.001
f43.6200.0573.5083.73163.540<.001
pp11.3700.0481.2761.46528.498<.001
pp21.9570.0631.8342.08131.018<.001
pp31.4850.0501.3871.58329.729<.001
pp42.0000.0641.8752.12531.375<.001
CLF0.0000.0000.0000.000  
CR0.0000.0000.0000.000  
FB0.0000.0000.0000.000  
PP0.0000.0000.0000.000  

 

Path Model

Path diagrams

[5]

References

[1] The jamovi project (2024). jamovi. (Version 2.6) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2024). R: A Language and environment for statistical computing. (Version 4.4) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from CRAN snapshot 2024-08-07).

[3] Gallucci, M., Jentschke, S. (2021). SEMLj: jamovi SEM Analysis. [jamovi module]. For help please visit https://semlj.github.io/.

[4] Rosseel, Y. (2019). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. link.

[5] Epskamp S. , Stuber S., Nak J., Veenman M,, Jorgensen T.D. (2019). semPlot: Path Diagrams and Visual Analysis of Various SEM Packages' Output. [R Package]. Retrieved from https://CRAN.R-project.org/package=semPlot.