GLM

non-numeric argument to mathematical function
ANOVA
 Sum of SquaresdfMean SquareFp
X3.71821.8592.9810.089
Y0.83710.8371.3430.269
Z1.27611.2762.0460.178
X ✻ Y0.70520.3530.5660.582
X ✻ Z6.29723.1485.0490.026
Y ✻ Z0.96010.9601.5390.238
X ✻ Y ✻ Z2.35521.1771.8880.194
Residuals7.483120.624  

 

Estimates
 ContrastEstimateSEtp
(Intercept)Intercept0.30910.1611.9170.079
X12 - 1, 2, 3-0.53220.228-2.3350.038
X23 - 1, 2, 30.40730.2281.7870.099
Y12 - 1, 20.18680.1611.1590.269
Z12 - 1, 20.23050.1611.4300.178
X1 ✻ Y12 - 1, 2, 3 ✻ 2 - 1, 2-0.08900.228-0.3900.703
X2 ✻ Y13 - 1, 2, 3 ✻ 2 - 1, 20.23980.2281.0520.314
X1 ✻ Z12 - 1, 2, 3 ✻ 2 - 1, 2-0.33030.228-1.4490.173
X2 ✻ Z13 - 1, 2, 3 ✻ 2 - 1, 2-0.39310.228-1.7250.110
Y1 ✻ Z12 - 1, 2 ✻ 2 - 1, 2-0.20000.161-1.2410.238
X1 ✻ Y1 ✻ Z12 - 1, 2, 3 ✻ 2 - 1, 2 ✻ 2 - 1, 2-0.44160.228-1.9370.077
X2 ✻ Y1 ✻ Z13 - 1, 2, 3 ✻ 2 - 1, 2 ✻ 2 - 1, 20.25100.2281.1010.293

 

Simple Effects ANOVA

Simple effects of X
EffectModerator LevelsSum of SquaresdfFp
.....
.....

 

Simple effects of X
EffectModerator LevelsSum of SquaresdfFp
.....
.....

 

Simple Effects Parameters

Simple effects of X
EffectModerator LevelsEstimateSEtp
X1Y at 1-0.4430.322-1.3750.194
X2Y at 10.1670.3220.5200.613
X1Y at 2-0.6210.322-1.9270.078
X2Y at 20.6470.3222.0070.068

 

Simple effects of X
EffectModerator LevelsEstimateSEtp
.....
.....
.....
.....