Model Info | |||||
---|---|---|---|---|---|
Info | Value | Comment | |||
Model Type | Logistic | Model for binary y | |||
Call | glm | Hall ~ 1 + T30 + position + (1 | subject) | |||
Link function | Logit | Log of the odd of y=1 over y=0 | |||
Direction | P(y=1)/P(y=0) | P( Hall = false ) / P( Hall = true ) | |||
Distribution | Binomial | Dichotomous event distribution of y | |||
LogLikel. | -674.59 | Less is better | |||
R-squared | 0.40 | Marginal | |||
R-squared | 0.49 | Conditional | |||
AIC | 1357.17 | Less is better | |||
BIC | 1377.64 | Less is better | |||
Deviance | 1217.05 | Conditional | |||
Residual DF | 1228.00 | ||||
Fixed Effect Omnibus tests | |||||||
---|---|---|---|---|---|---|---|
X² | df | p | |||||
T30 | 163.72 | 1.00 | < .001 | ||||
position | 0.24 | 1.00 | 0.627 | ||||
Fixed Effects Parameter Estimates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% Exp(B) Confidence Interval | |||||||||||||||||
Names | Effect | Estimate | SE | exp(B) | Lower | Upper | z | p | |||||||||
(Intercept) | (Intercept) | -0.67 | 0.12 | 0.51 | 0.41 | 0.64 | -5.79 | < .001 | |||||||||
T30 | T30 | -1.09 | 0.08 | 0.34 | 0.29 | 0.40 | -12.80 | < .001 | |||||||||
position1 | back right - middle center | -0.07 | 0.14 | 0.93 | 0.71 | 1.23 | -0.49 | 0.627 | |||||||||
Random Components | |||||||
---|---|---|---|---|---|---|---|
Groups | Name | SD | Variance | ||||
subject | (Intercept) | 0.78 | 0.61 | ||||
Residuals | 1.00 | 1.00 | |||||
Note. Number of Obs: 1232 , groups: subject , 88 | |||||||
Error in `contrasts<-`(`*tmp*`, ncol(ca), value = ca): contrasts apply only to factors private$.run() private$.preparePlots(private$.model) predict(model, type = type, newdata = newdata) predict.merMod(model, type = type, newdata = newdata) model.matrix(RHS, data = mfnew, contrasts.arg = attr(X, "contrasts")) model.matrix.default(RHS, data = mfnew, contrasts.arg = attr(X, "contrasts")) `contrasts<-`(`*tmp*`, ncol(ca), value = ca) stop("contrasts apply only to factors")
Model Info | |||||
---|---|---|---|---|---|
Info | Value | Comment | |||
Model Type | Logistic | Model for binary y | |||
Call | glm | Hall ~ 1 + position + T30 + (1 | subject) | |||
Link function | Logit | Log of the odd of y=1 over y=0 | |||
Direction | P(y=1)/P(y=0) | P( Hall = false ) / P( Hall = true ) | |||
Distribution | Binomial | Dichotomous event distribution of y | |||
LogLikel. | -674.59 | Less is better | |||
R-squared | 0.40 | Marginal | |||
R-squared | 0.49 | Conditional | |||
AIC | 1357.17 | Less is better | |||
BIC | 1377.64 | Less is better | |||
Deviance | 1217.05 | Conditional | |||
Residual DF | 1228.00 | ||||
Fixed Effect Omnibus tests | |||||||
---|---|---|---|---|---|---|---|
X² | df | p | |||||
position | 0.24 | 1.00 | 0.627 | ||||
T30 | 163.72 | 1.00 | < .001 | ||||
Fixed Effects Parameter Estimates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% Exp(B) Confidence Interval | |||||||||||||||||
Names | Effect | Estimate | SE | exp(B) | Lower | Upper | z | p | |||||||||
(Intercept) | (Intercept) | -0.67 | 0.12 | 0.51 | 0.41 | 0.64 | -5.79 | < .001 | |||||||||
position1 | back right - middle center | -0.07 | 0.14 | 0.93 | 0.71 | 1.23 | -0.49 | 0.627 | |||||||||
T30 | T30 | -1.09 | 0.08 | 0.34 | 0.29 | 0.40 | -12.80 | < .001 | |||||||||
Random Components | |||||||
---|---|---|---|---|---|---|---|
Groups | Name | SD | Variance | ||||
subject | (Intercept) | 0.78 | 0.61 | ||||
Residuals | 1.00 | 1.00 | |||||
Model Info | |||
---|---|---|---|
Info | |||
Estimate | Linear mixed model fit by REML | ||
Call | Halligkeit ~ 1 + T30 + position+( 1 | subject ) | ||
AIC | 11693.98 | ||
BIC | 11714.09 | ||
R-squared Marginal | 0.26 | ||
R-squared Conditional | 0.33 | ||
Fixed Effect Omnibus tests | |||||||||
---|---|---|---|---|---|---|---|---|---|
F | Num df | Den df | p | ||||||
T30 | 461.01 | 1 | 1187.96 | < .001 | |||||
position | 1.29 | 1 | 1205.33 | 0.256 | |||||
Fixed Effects Parameter Estimates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% Confidence Interval | |||||||||||||||||
Names | Effect | Estimate | SE | Lower | Upper | df | t | p | |||||||||
(Intercept) | (Intercept) | 51.83 | 1.19 | 49.50 | 54.17 | 86.61 | 43.48 | < .001 | |||||||||
T30 | T30 | 11.30 | 0.53 | 10.26 | 12.33 | 1187.96 | 21.47 | < .001 | |||||||||
position1 | back right - middle center | 1.79 | 1.57 | -1.30 | 4.87 | 1205.33 | 1.14 | 0.256 | |||||||||
Random Components | |||||||||
---|---|---|---|---|---|---|---|---|---|
Groups | Name | SD | Variance | ICC | |||||
subject | (Intercept) | 8.56 | 73.24 | 0.09 | |||||
Residual | 26.91 | 724.39 | |||||||
Model Info | |||||
---|---|---|---|---|---|
Info | Value | Comment | |||
Model Type | Logistic | Model for binary y | |||
Call | glm | Hall ~ 1 + T30 + (1 | subject) | |||
Link function | Logit | Log of the odd of y=1 over y=0 | |||
Direction | P(y=1)/P(y=0) | P( Hall = false ) / P( Hall = true ) | |||
Distribution | Binomial | Dichotomous event distribution of y | |||
LogLikel. | -674.70 | Less is better | |||
R-squared | 0.40 | Marginal | |||
R-squared | 0.49 | Conditional | |||
AIC | 1355.41 | Less is better | |||
BIC | 1370.76 | Less is better | |||
Deviance | 1216.90 | Conditional | |||
Residual DF | 1229.00 | ||||
Fixed Effect Omnibus tests | |||||||
---|---|---|---|---|---|---|---|
X² | df | p | |||||
T30 | 163.60 | 1.00 | < .001 | ||||
Fixed Effects Parameter Estimates | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% Exp(B) Confidence Interval | |||||||||||||||
Names | Estimate | SE | exp(B) | Lower | Upper | z | p | ||||||||
(Intercept) | -0.67 | 0.12 | 0.51 | 0.41 | 0.64 | -5.78 | < .001 | ||||||||
T30 | -1.08 | 0.08 | 0.34 | 0.29 | 0.40 | -12.79 | < .001 | ||||||||
Random Components | |||||||
---|---|---|---|---|---|---|---|
Groups | Name | SD | Variance | ||||
subject | (Intercept) | 0.78 | 0.61 | ||||
Residuals | 1.00 | 1.00 | |||||