Generalized Mixed Model

Model Info
InfoValueComment
Model TypeLogisticModel for binary y
CallglmHall ~ 1 + T30 + position + (1 | subject)
Link functionLogitLog of the odd of y=1 over y=0
DirectionP(y=1)/P(y=0)P( Hall = false ) / P( Hall = true )
DistributionBinomialDichotomous event distribution of y
LogLikel.-674.59Less is better
R-squared0.40Marginal
R-squared0.49Conditional
AIC1357.17Less is better
BIC1377.64Less is better
Deviance1217.05Conditional
Residual DF1228.00 

 

Model Results

Fixed Effect Omnibus tests
 dfp
T30163.721.00< .001
position0.241.000.627

 

Fixed Effects Parameter Estimates
95% Exp(B) Confidence Interval
NamesEffectEstimateSEexp(B)LowerUpperzp
(Intercept)(Intercept)-0.670.120.510.410.64-5.79< .001
T30T30-1.090.080.340.290.40-12.80< .001
position1back right - middle center-0.070.140.930.711.23-0.490.627

 

Random Components
GroupsNameSDVariance
subject(Intercept)0.780.61
Residuals 1.001.00
Note. Number of Obs: 1232 , groups: subject , 88

 

Effects Plots

Generalized Mixed Model

contrasts apply only to factors

Debug

Error in `contrasts<-`(`*tmp*`, ncol(ca), value = ca): contrasts apply only to factors

private$.run()
private$.preparePlots(private$.model)
predict(model, type = type, newdata = newdata)
predict.merMod(model, type = type, newdata = newdata)
model.matrix(RHS, data = mfnew, contrasts.arg = attr(X, "contrasts"))
model.matrix.default(RHS, data = mfnew, contrasts.arg = attr(X, "contrasts"))
`contrasts<-`(`*tmp*`, ncol(ca), value = ca)
stop("contrasts apply only to factors")
Model Info
InfoValueComment
Model TypeLogisticModel for binary y
CallglmHall ~ 1 + position + T30 + (1 | subject)
Link functionLogitLog of the odd of y=1 over y=0
DirectionP(y=1)/P(y=0)P( Hall = false ) / P( Hall = true )
DistributionBinomialDichotomous event distribution of y
LogLikel.-674.59Less is better
R-squared0.40Marginal
R-squared0.49Conditional
AIC1357.17Less is better
BIC1377.64Less is better
Deviance1217.05Conditional
Residual DF1228.00 

 

Model Results

Fixed Effect Omnibus tests
 dfp
position0.241.000.627
T30163.721.00< .001

 

Fixed Effects Parameter Estimates
95% Exp(B) Confidence Interval
NamesEffectEstimateSEexp(B)LowerUpperzp
(Intercept)(Intercept)-0.670.120.510.410.64-5.79< .001
position1back right - middle center-0.070.140.930.711.23-0.490.627
T30T30-1.090.080.340.290.40-12.80< .001

 

Random Components
GroupsNameSDVariance
subject(Intercept)0.780.61
Residuals 1.001.00

 

Effects Plots

Mixed Model

Model Info
Info 
EstimateLinear mixed model fit by REML
CallHalligkeit ~ 1 + T30 + position+( 1 | subject )
AIC11693.98
BIC11714.09
R-squared Marginal0.26
R-squared Conditional0.33

 

Model Results

Fixed Effect Omnibus tests
 FNum dfDen dfp
T30461.0111187.96< .001
position1.2911205.330.256

 

Fixed Effects Parameter Estimates
95% Confidence Interval
NamesEffectEstimateSELowerUpperdftp
(Intercept)(Intercept)51.831.1949.5054.1786.6143.48< .001
T30T3011.300.5310.2612.331187.9621.47< .001
position1back right - middle center1.791.57-1.304.871205.331.140.256

 

Random Components
GroupsNameSDVarianceICC
subject(Intercept)8.5673.240.09
Residual 26.91724.39 

 

Effects Plots

Note: Random effects are plotted by subject

Generalized Mixed Model

Model Info
InfoValueComment
Model TypeLogisticModel for binary y
CallglmHall ~ 1 + T30 + (1 | subject)
Link functionLogitLog of the odd of y=1 over y=0
DirectionP(y=1)/P(y=0)P( Hall = false ) / P( Hall = true )
DistributionBinomialDichotomous event distribution of y
LogLikel.-674.70Less is better
R-squared0.40Marginal
R-squared0.49Conditional
AIC1355.41Less is better
BIC1370.76Less is better
Deviance1216.90Conditional
Residual DF1229.00 

 

Model Results

Fixed Effect Omnibus tests
 dfp
T30163.601.00< .001

 

Fixed Effects Parameter Estimates
95% Exp(B) Confidence Interval
NamesEstimateSEexp(B)LowerUpperzp
(Intercept)-0.670.120.510.410.64-5.78< .001
T30-1.080.080.340.290.40-12.79< .001

 

Random Components
GroupsNameSDVariance
subject(Intercept)0.780.61
Residuals 1.001.00

 

Effects Plots

Note: Random effects are plotted by subject Results