Mixed Model

Model Info
Info 
EstimateLinear mixed model fit by REML
CallJOLs ~ 1 + Race + Tipicality + Race:Tipicality+( 0+Race | Subject )
AIC12668
BIC12728
R-squared MarginalNaN
R-squared ConditionalNaN
Note. R-squared cannot be computed.
[3]

 

Model Results

Fixed Effect Omnibus tests
 FNum dfDen dfp
Race3.68154.00.060
Tipicality61.9113188.0< .001
Race ✻ Tipicality6.2813188.00.012
Note. Satterthwaite method for degrees of freedom

 

Fixed Effects Parameter Estimates
95% Confidence Interval
NamesEffectEstimateSELowerUpperdftp
(Intercept)(Intercept)4.6440.13174.385604.90254.035.27< .001
Race1White - Black0.2280.1188-0.004980.46154.01.920.060
Tipicality1LowTip - HighTip0.4340.05510.325850.5423188.07.87< .001
Race1 ✻ Tipicality1White - Black ✻ LowTip - HighTip0.2760.11030.060180.4933188.02.510.012

 

Random Components
GroupsNameSDVarianceICC
SubjectRaceBlack0.9790.959 
 RaceWhite1.0811.168 
Residual 1.5842.509 
Note. Number of Obs: 3300 , groups: Subject , 55

 

Random Parameters correlations
GroupsParam.1Param.2Corr.
SubjectRaceBlackRaceWhite0.717

 

References

[1] The jamovi project (2020). jamovi. (Version 1.2) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2019). R: A Language and envionment for statistical computing. (Version 3.6) [Computer software]. Retrieved from https://cran.r-project.org/.

[3] Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module]. Retrieved from https://gamlj.github.io/.