Frequencies of emot_probs_binomial | |||||||||
---|---|---|---|---|---|---|---|---|---|
Group | |||||||||
emot_probs_binomial | Time | Gender | Control | Intervention | |||||
low | T1 | F | 2 | 6 | |||||
M | 5 | 6 | |||||||
T2 | F | 4 | 8 | ||||||
M | 3 | 7 | |||||||
high | T1 | F | 8 | 5 | |||||
M | 4 | 1 | |||||||
T2 | F | 6 | 3 | ||||||
M | 6 | 0 | |||||||
Model Info | |||||
---|---|---|---|---|---|
Info | Value | Comment | |||
Model Type | Logistic | Model for binary y | |||
Call | glm | emot_probs_binomial ~ 1 + Group + Time + Time:Group + (1 | Participant) | |||
Link function | Logit | Log of the odd of y=1 over y=0 | |||
Direction | P(y=1)/P(y=0) | P( emot_probs_binomial = ) / P( emot_probs_binomial = ) | |||
Distribution | Binomial | Dichotomous event distribution of y | |||
LogLikel. | -36.206 | Less is better | |||
R-squared | 0.256 | Marginal | |||
R-squared | 0.993 | Conditional | |||
AIC | 82.410 | Less is better | |||
BIC | 93.932 | Less is better | |||
Deviance | 12.023 | Conditional | |||
Residual DF | 69.000 | ||||
Converged | yes | ||||
Optimizer | bobyqa | ||||
[3] |
Fixed Effect Omnibus tests | |||||||
---|---|---|---|---|---|---|---|
X² | df | p | |||||
Group | 18.65 | 1.00 | < .001 | ||||
Time | 1.33e-15 | 1.00 | 1.000 | ||||
Time ✻ Group | 6.04 | 1.00 | 0.014 | ||||
Fixed Effects Parameter Estimates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% Exp(B) Confidence Interval | |||||||||||||||||
Names | Effect | Estimate | SE | exp(B) | Lower | Upper | z | p | |||||||||
(Intercept) | (Intercept) | 8.77 | 2.46 | 6428.41 | 51.5143 | 802193.811 | 3.56 | < .001 | |||||||||
Group1 | Intervention - Control | -17.20 | 3.98 | 3.39e-8 | 1.38e-11 | 8.33e-5 | -4.32 | < .001 | |||||||||
Time1 | T2 - T1 | 5.61e-8 | 1.54 | 1.00 | 0.0488 | 20.493 | 3.64e-8 | 1.000 | |||||||||
Group1 ✻ Time1 | Intervention - Control ✻ T2 - T1 | -9.00 | 3.66 | 1.23e-4 | 9.44e | -80.161 | -2.46 | 0.014 | |||||||||
Random Components | |||||||
---|---|---|---|---|---|---|---|
Groups | Name | SD | Variance | ||||
Participant | (Intercept) | 19.29 | 372.08 | ||||
Residuals | 1.00 | 1.00 | |||||
Note. Number of Obs: 74 , groups: Participant 37 | |||||||
Time | |||||||
---|---|---|---|---|---|---|---|
Name | Contrast | level=T1 | level=T2 | ||||
Time1 | T2 - T1 | 0 | 1 | ||||
Note. Intercept computed for Time=T1 | |||||||
Group | |||||||
---|---|---|---|---|---|---|---|
Name | Contrast | level=Control | level=Intervention | ||||
Group1 | Intervention - Control | 0 | 1 | ||||
Note. Intercept computed for Group=Control | |||||||
Gender | |||||||
---|---|---|---|---|---|---|---|
Name | Contrast | level=F | level=M | ||||
Gender1 | M - F | 0 | 1 | ||||
Note. Intercept computed for Gender=F | |||||||
Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
95% Confidence Interval | |||||||||||
Group | Prob. | SE | df | Lower | Upper | ||||||
Control | 1.000 | 3.64e-4 | Inf | 0.985 | 1.00000 | ||||||
Intervention | 2.42e-6 | 7.91e-6 | Inf | 4.00e-9 | 0.00146 | ||||||
Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
95% Confidence Interval | |||||||||||
Time | Prob. | SE | df | Lower | Upper | ||||||
T1 | 0.5420 | 0.3229 | Inf | 0.0846 | 0.938 | ||||||
T2 | 0.0130 | 0.0258 | Inf | 2.52e-4 | 0.407 | ||||||
Group:Time | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% Confidence Interval | |||||||||||||
Group | Time | Prob. | SE | df | Lower | Upper | |||||||
Control | T1 | 1.000 | 3.83e-4 | Inf | 0.981 | 1.0000 | |||||||
Intervention | T1 | 2.18e-4 | 4.99e-4 | Inf | 2.44e | -60.0191 | |||||||
Control | T2 | 1.000 | 3.83e-4 | Inf | 0.981 | 1.0000 | |||||||
Intervention | T2 | 2.69e-8 | 1.25e-7 | Inf | 2.96e-12 | 2.44e-4 | |||||||
[1] The jamovi project (2020). jamovi. (Version 1.2) [Computer Software]. Retrieved from https://www.jamovi.org.
[2] R Core Team (2019). R: A Language and environment for statistical computing. (Version 3.6) [Computer software]. Retrieved from https://cran.r-project.org/.
[3] Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module]. Retrieved from https://gamlj.github.io/.