Model Fit Measures | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall Model Test | |||||||||||||
Model | R² | Adjusted R² | F | df1 | df2 | p | |||||||
1 | 0.120 | 0.0695 | 2.38 | 4 | 70 | 0.05976 | |||||||
Model Coefficients - saving | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | |||||
Intercept | -389.638 | 1474.6795 | -0.264 | 0.79239 | |||||
income | 0.126 | 0.0553 | 2.282 | 0.02555 | |||||
size | 65.663 | 120.5137 | 0.545 | 0.58758 | |||||
education | 38.294 | 57.2443 | 0.669 | 0.50572 | |||||
age | 2.956 | 26.9692 | 0.110 | 0.91304 | |||||
Call: lm(formula = saving ~ income + size + education + age, data = data) Residuals: Min 1Q Median 3Q Max -2509.4 -958.5 -339.7 263.8 4602.3 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -389.63835 1474.67951 -0.264 0.7924 income 0.12627 0.05534 2.282 0.0256 * size 65.66259 120.51371 0.545 0.5876 education 38.29397 57.24433 0.669 0.5057 age 2.95580 26.96923 0.110 0.9130 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1436 on 70 degrees of freedom Multiple R-squared: 0.1198, Adjusted R-squared: 0.06946 F-statistic: 2.381 on 4 and 70 DF, p-value: 0.05976
Call: lm(formula = saving ~ income + size + education + age, data = data) Residuals: Min 1Q Median 3Q Max -2509.4 -958.5 -339.7 263.8 4602.3 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -389.63835 1442.50308 -0.270 0.7879 income 0.12627 0.06395 1.975 0.0523 . size 65.66259 101.53832 0.647 0.5200 education 38.29397 56.46033 0.678 0.4999 age 2.95580 29.13543 0.101 0.9195 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1436 on 70 degrees of freedom Multiple R-squared: 0.1198, Adjusted R-squared: 0.06946 F-statistic: 3.331 on 4 and 70 DF, p-value: 0.01481