Model Info | |||
---|---|---|---|
Info | |||
Estimate | Linear mixed model fit by REML | ||
Call | Likelihood estimate ~ 1 + Warmth + Competence + Valence + Warmth:Competence + Warmth:Valence + Competence:Valence + Warmth:Competence:Valence+( 1 | Scenario_ID )+( 1 | Subject_ID ) | ||
AIC | 340995.06 | ||
BIC | 341081.18 | ||
LogLikel. | 340965.40 | ||
R-squared Marginal | 0.10 | ||
R-squared Conditional | 0.29 | ||
Converged | yes | ||
Optimizer | bobyqa | ||
[3] |
Fixed Effect Omnibus tests | |||||||||
---|---|---|---|---|---|---|---|---|---|
F | Num df | Den df | p | ||||||
Warmth | 499.98 | 1 | 37001.00 | < .001 | |||||
Competence | 1528.14 | 1 | 37001.00 | < .001 | |||||
Valence | 0.52 | 1 | 46.00 | 0.476 | |||||
Warmth ✻ Competence | 0.41 | 1 | 37001.00 | 0.524 | |||||
Warmth ✻ Valence | 1693.96 | 1 | 37001.00 | < .001 | |||||
Competence ✻ Valence | 625.50 | 1 | 37001.00 | < .001 | |||||
Warmth ✻ Competence ✻ Valence | 911.61 | 1 | 37001.00 | < .001 | |||||
Note. Satterthwaite method for degrees of freedom | |||||||||
Fixed Effects Parameter Estimates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% Confidence Interval | |||||||||||||||||
Names | Effect | Estimate | SE | Lower | Upper | df | t | p | |||||||||
(Intercept) | (Intercept) | 56.97 | 1.57 | 53.90 | 60.04 | 52.17 | 36.36 | < .001 | |||||||||
Warmth1 | warm - cold | 5.40 | 0.24 | 4.93 | 5.87 | 37001.00 | 22.36 | < .001 | |||||||||
Competence1 | incompetent - competent | -9.44 | 0.24 | -9.91 | -8.97 | 37001.00 | -39.09 | < .001 | |||||||||
Valence1 | POSITIVE - NEGATIVE | 2.18 | 3.04 | -3.77 | 8.13 | 46.00 | 0.72 | 0.476 | |||||||||
Warmth1 ✻ Competence1 | warm - cold ✻ incompetent - competent | 0.31 | 0.48 | -0.64 | 1.25 | 37001.00 | 0.64 | 0.524 | |||||||||
Warmth1 ✻ Valence1 | warm - cold ✻ POSITIVE - NEGATIVE | 19.88 | 0.48 | 18.93 | 20.83 | 37001.00 | 41.16 | < .001 | |||||||||
Competence1 ✻ Valence1 | incompetent - competent ✻ POSITIVE - NEGATIVE | -12.08 | 0.48 | -13.03 | -11.13 | 37001.00 | -25.01 | < .001 | |||||||||
Warmth1 ✻ Competence1 ✻ Valence1 | warm - cold ✻ incompetent - competent ✻ POSITIVE - NEGATIVE | 29.17 | 0.97 | 27.27 | 31.06 | 37001.00 | 30.19 | < .001 | |||||||||
Random Components | |||||||||
---|---|---|---|---|---|---|---|---|---|
Groups | Name | SD | Variance | ICC | |||||
Subject_ID | (Intercept) | 5.41 | 29.31 | 0.05 | |||||
Scenario_ID | (Intercept) | 10.48 | 109.91 | 0.17 | |||||
Residual | 23.31 | 543.13 | |||||||
Note. Number of Obs: 37248 , groups: Subject_ID 194, Scenario_ID 48 | |||||||||
Simple effects of Warmth : Omnibus Tests | |||||||
---|---|---|---|---|---|---|---|
Moderator levels | |||||||
Valence | X² | df | p | ||||
NEGATIVE | 176.67 | 1.00 | < .001 | ||||
POSITIVE | 2017.27 | 1.00 | < .001 | ||||
Simple effects of Warmth : Parameter estimates | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Moderator levels | 95% Confidence Interval | ||||||||||||||
Valence | contrast | Estimate | SE | Lower | Upper | z | p | ||||||||
NEGATIVE | warm - cold | -4.54 | 0.34 | -5.21 | -3.87 | -13.29 | < .001 | ||||||||
POSITIVE | warm - cold | 15.34 | 0.34 | 14.67 | 16.01 | 44.91 | < .001 | ||||||||
Note. Simple effects are estimated keeping constant other independent variable(s) in the model | |||||||||||||||
[1] The jamovi project (2021). jamovi. (Version 1.6) [Computer Software]. Retrieved from https://www.jamovi.org.
[2] R Core Team (2020). R: A Language and environment for statistical computing. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2020-08-24).
[3] Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module]. Retrieved from https://gamlj.github.io/.