Results

Mixed Model

Model Info
Info 
EstimateLinear mixed model fit by REML
CallLikelihood estimate ~ 1 + Valence + Warmth + Competence + Valence:Warmth + Valence:Competence + Warmth:Competence + Valence:Warmth:Competence+( 1 | Subject_ID )+( 1 | Trial_ID )
AIC105560.40
BIC105625.36
LogLikel.105522.61
R-squared Marginal0.11
R-squared Conditional0.28
Convergedyes
Optimizerbobyqa
[3]

 

Model Results

Fixed Effect Omnibus tests
 FNum dfDen dfp
Valence0.47130.000.499
Warmth462.82111266.00< .001
Competence162.55111266.00< .001
Valence ✻ Warmth569.22111266.00< .001
Valence ✻ Competence137.74111266.00< .001
Warmth ✻ Competence112.44111266.00< .001
Valence ✻ Warmth ✻ Competence214.74111266.00< .001
Note. Satterthwaite method for degrees of freedom

 

Fixed Effects Parameter Estimates
95% Confidence Interval
NamesEffectEstimateSELowerUpperdftp
(Intercept)(Intercept)54.651.8251.0958.2245.7430.04< .001
Valence1Positive - Negative2.233.25-4.158.6130.000.680.499
Warmth1Warm - Cold9.870.468.9710.7711266.0021.51< .001
Competence1Incompetent - Competent-5.850.46-6.75-4.9511266.00-12.75< .001
Valence1 ✻ Warmth1Positive - Negative ✻ Warm - Cold21.890.9220.0923.6911266.0023.86< .001
Valence1 ✻ Competence1Positive - Negative ✻ Incompetent - Competent-10.770.92-12.57-8.9711266.00-11.74< .001
Warmth1 ✻ Competence1Warm - Cold ✻ Incompetent - Competent-9.730.92-11.53-7.9311266.00-10.60< .001
Valence1 ✻ Warmth1 ✻ Competence1Positive - Negative ✻ Warm - Cold ✻ Incompetent - Competent26.891.8423.2930.4911266.0014.65< .001

 

Random Components
GroupsNameSDVarianceICC
Subject_ID(Intercept)7.6858.910.09
Trial_ID(Intercept)9.1183.060.12
Residual 24.48599.39 
Note. Number of Obs: 11392 , groups: Subject_ID 89, Trial_ID 32

 

Post Hoc Tests

Post Hoc Comparisons - Valence ✻ Warmth
Comparison
ValenceWarmth ValenceWarmthDifferenceSEtdfpbonferroni
NegativeColdNegativeWarm-..1.080.651.6611266.000.584
NegativeColdPositiveCold-..8.723.292.6531.200.075
NegativeColdPositiveWarm-..-12.103.29-3.6831.200.005
NegativeWarmPositiveWarm-..-13.173.29-4.0131.200.002
PositiveColdNegativeWarm-..-7.643.29-2.3231.200.161
PositiveColdPositiveWarm-..-20.810.65-32.0811266.00< .001

 

Simple Effects

Simple effects of Valence : Omnibus Tests
Moderator levels
WarmthFNum dfDen dfp
Cold7.031.0031.200.012
Warm16.061.0031.20< .001

 

Simple effects of Valence : Parameter estimates
Moderator levels95% Confidence Interval
WarmthcontrastEstimateSELowerUpperdftp
ColdPositive - Negative-8.723.29-15.42-2.0231.20-2.650.012
WarmPositive - Negative13.173.296.4719.8831.204.01< .001
Note. Simple effects are estimated setting higher order moderator (if any) in covariates to zero and averaging across moderating factors levels (if any)

 

References

[1] The jamovi project (2021). jamovi. (Version 1.6) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2020). R: A Language and environment for statistical computing. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2020-08-24).

[3] Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module]. Retrieved from https://gamlj.github.io/.